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1. I

In the aggregative growth model, the Phelps-Koopmans theorem provides one of the
most well-known sufficient conditions for inefficiency. Awarding the 2006 Nobel Prize
in Economic Sciences to Edmund Phelps, the Royal Swedish Academy of Sciences observed
that

“Phelps . . . showed that all generations may, under certain conditions, gain
from changes in the savings rate.”

These “certain conditions” were conjectured by Phelps (1962), and the verification of these
conditions, based on a proof provided by Koopmans, appeared in Phelps (1965). The Phelps-
Koopmans theorem may be stated as follows: if every limit point of a path of capital stocks
exceeds the “golden rule”, then that path is inefficient: there is another feasible path from
the same initial stock which provides at least as much consumption at every date and strictly
more consumption at some date.

Why might such a result be noteworthy? While efficiency is of intrinsic interest, one might
argue that the real interest is in optimal programs, in which a “sum” of one-period utilities is
maximized. When there is discounting, that sum is indeed well-defined, and it was already
well-known that optimal programs must converge to a “modified” golden rule, which lies
below the golden rule. In the light of this result, what does the Phelps-Koopmans theorem
add?

Tapan Mitra, a leading theorist who has made deep contributions to our understanding of
the aggregative growth model, has this to say:

“Both Phelps and Koopmans would have known [about convergence to
the modified golden rule] in 1965; yet they were interested in the Phelps-
Koopmans theorem. Since Phelps explicitly brings in the optimality notion,
the only way this makes sense to me is that he had in mind the optimal
growth model without discounting, or at least he had not completely made
up his mind about the discounting issue. Koopmans (1960) provided
what is considered to be the definitive axiomatic treatment of discounted
utilitarianism, but he was quite uncomfortable with the result, as his writings
in 1964 and 1972 on this issue clearly show.

[The exercise] can only be justified, from the optimality point of view, if one
is willing to allow undiscounted optimality. Inefficiency is, after all, about

1The aggregative growth model represented my point of entry into research in 1979, and Tapan Mitra was the
one who opened that door. It’s only fitting, then, that I should dedicate this paper, with affection and gratitude,
to Tapanda on the occasion of his 60th birthday. May there be many more occasions to celebrate the work of this
remarkable theorist!
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spending an infinite amount of time above the golden rule. It has no interest
for discounted optimization theory.”2

In the above quote Mitra refers, of course, to the convex model of growth, for which the
Phelps-Koopmans theorem is stated, and for which the discounted optimality result was
well-known. The discomfort that he alludes to would have been entirely justified, given
the philosophical objections to discounting raised in the early work of Ramsey (1927). Yet it
does raise the question of whether the same observations are true in a nonconvex model of
growth: can discounted optimal paths spend an “infinite amount of time above” the golden
rule?

This paper seeks to answer that question. I show in Proposition 1 that if an optimal path
converges, its limit must lie weakly below the minimal golden rule, the lowest capital stock
that globally maximizes net consumption. This result is independent of any curvature
assumptions, either on the production function or on the utility function. Thus far, then, the
intuition of the convex model carries over: convergent programs that are potentially optimal
with respect to some utility function cannot stay above and bounded away from the golden
rule. As an aside, it is of some interest that the same observation is not generally true of
efficient programs: Mitra and Ray (2008) show by example that an efficient convergent path
might converge to a limit that strictly exceeds the minimal golden rule.

However, the main result of the paper is Proposition 3. I prove that there are potentially
optimal paths with discounting which have the property that they perennially lie above (and
bounded away from) the minimal golden rule. Indeed, I construct such paths in a framework
with a unique golden rule. So the word “minimal” can safely be dropped from the statement
of the proposition.3

2. P

At every date, capital kt produces output f (kt), where f : R→ R is the production function.
We assume throughout that f satisfies the following restrictions:

[F.1] f is increasing and continuous, with f (0) = 0.

[F.2] There is K ∈ (0,∞) such that f (x) > x for all x ∈ (0,K) and f (x) < x for all x > K.

We refer to K as the maximum sustainable stock. Observe that f is permitted to be nonconcave.

A feasible path from κ ≥ 0 is a sequence of capital stocks k ≡ {kt}with

k0 = κ and 0 ≤ kt+1 ≤ f (kt)

for all t ≥ 0. Associated with the feasible path k from κ is a consumption sequence {ct}, defined
by

ct = f (kt−1) − kt for t ≥ 1.

2This quote is extracted from a private communication by Tapan Mitra.
3Mitra and Ray (2008) show, again by example, that there is an efficient path which lies above and bounded
away from a unique golden rule. Proposition 3 represents a significant strengthening of this result.
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It is obvious that for every feasible path k from κ, both kt and ct+1 are bounded above by
max{K, κ}. With no real loss of generality, we presume that κ ∈ [0,K], so that for every
feasible path k from κ,

kt ≤ K for t ≥ 0 and ct ≤ K for t ≥ 1.

A feasible path k from κ is inefficient if there is a feasible path k′ from κ such that

c′t ≥ ct for all t ≥ 1,

with strict inequality for some t. It is efficient if it is not inefficient.

Under [F.1] and [F.2] there is z ∈ (0,K) such that

f (z) − z ≥ f (x) − x for all x ≥ 0.

Then we call z a golden rule stock, or simply a golden rule. Certainly, there can be several
golden rules, all in (0,K). But a minimal golden rule — the smallest of all the golden rule
stocks — must exist, which we denote by γ. Golden rule consumption is, of course, the same
for all golden rules; it is denoted by c.

For any δ ∈ (0, 1), a feasible path k∗ from κ is potentially δ-optimal if there exists a strictly
increasing and continuous utility function u defined on consumption such that k∗ solves the
problem

max
k

∞∑
t=0

δtu(ct+1)

where {ct} is the consumption path associated with k. The path is potentially optimal if it is
potentially δ-optimal for some δ ∈ (0, 1).

The following observation is trivial.

O 1. If a feasible path is potentially optimal, then it is efficient.

Remark. The converse is not true; see below.

3. P O  C P

The following result shows that all potentially optimal convergent paths must have a limit
that lies below the minimal golden rule.

P 1. Suppose that k∗ is a potentially optimal path with a well-defined limit k∗. Then
k∗ ≤ γ.

Proof. Suppose that k∗ has limit k∗ > γ. Define c∗ ≡ f (k∗) − k∗. Then associated consumption
c∗t → c∗. Fix any strictly increasing and continuous utility function u. Then there exists ε > 0
and T′ ≥ 1 such that for all t ≥ T′,

(1) u
(
c∗t + kt − γ

)
− u

(
c∗t
)
≥ 2ε.

Choose T ≥ T′ such that

(2)
∞∑

t=T+1

δt−T [u(ct) − u(c∗)] < ε,
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Define a new path k from the same initial stock by kt = k∗t for all t ≤ T − 1, and kt = γ for all
t ≥ T. By (1), k∗T > γ, so k is feasible. Let c ≡ f (γ) − γ stand for golden rule consumption.
Note that c ≥ c∗. Then the overall payoff generated by k is

v(k) ≡
T−1∑
t=1

δt−1u(ct) + δT−1u
(
cT + k∗ − γ

)
+

∞∑
t=T+1

δt−1u(c)

≥

T−1∑
t=1

δt−1u(ct) + δT−1u
(
c∗t
)

+ 2δT−1ε +

∞∑
t=T+1

δt−1u(c∗)

≥

T−1∑
t=1

δt−1u(ct) + δT−1u
(
c∗t
)

+ 2δT−1ε +

∞∑
t=T+1

δt−1u(ct) − δT−1ε

=

∞∑
t=1

δt−1u(ct) + 2δT−1ε

> v(k∗),

where the first inequality uses (1) and c ≥ c∗, and the second inequality uses (2).

This proves that k∗ cannot be potentially optimal.

Remarks

1. It is obvious that a potentially optimal program is efficient. This proposition, combined
with Example 1 in Mitra and Ray (2008), shows that the converse is generally false. That
example constructs a convergent efficient program with limit capital stock above the minimal
golden rule. By Proposition 1, such a program cannot be potentially optimal.

2. One might argue that convergent paths are unable to exploit consumption gains from
a nonconvex technology by cycling through various capital stocks. (And this is why the
“traditional” result of Proposition 1 is to be had for such paths.) But this intuition is
erroneous. To the right of the minimal golden rule no such gain exists. To see this informally,
suppose that a path k repeatedly cycles through the n values k1, . . . , kn. Define c1

≡ f (ki)−ki+1,
where the addition i + 1 is modulo n. Can the average consumption

1
n

[c1 + · · · + cn]

ever exceed golden rule consumption c? It cannot. To see why, simply note that

1
n

[c1 + · · · + cn] =
1
n

n∑
i=1

[ f (ki) − ki+1] =
1
n

n∑
i=1

[ f (ki) − ki]] ≤ c.

Indeed, the following proposition drives this point home:

P 2. If k is an optimal path under some increasing, continuous and strictly concave u,
then it must converge.
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k

f (k)

1 2 3 4

1

2

3

2 - θ 

2 + β 

αβ + β + 2  

2 + β 

F 1. T  f ε    (4)

The proof may be found in Mitra and Ray (1984) and is omitted here. The proposition
underscores the observation that no matter how small the degree of concavity in u, it never
pays to cycle (nor engage in more exotic nonconvergent behavior).

4. T P-K T  P O

Proposition 1 is well-known for concave models. This is why the study of paths that stay
above the golden rule for an infinite number of periods is typically not justified by the
optimal growth model with discounting. The purpose of this section is to show that this
observation fails for nonconvex models.

I require throughout that f satisfy [F.1] and [F.2]. I impose an additional restriction in a
deliberate attempt to stay close in spirit to the model with convex technology:

[F.3] f has a unique golden rule γ.

(Note that additional requirements on f make our result below stronger, not weaker.)

P 3. For every δ such that δ2 + δ3 > 1, there exists a technology satisfying [F.1]–[F.3],
an initial stock κ > 0 and a potentially δ-optimal path k∗ from κ, with inft k∗t > γ.

Proof. We begin by constructing a technology. Fix α ∈ (0.9, 1), β ∈ (0.9, 1) and θ ∈ (0, 1 − β).
Define

(3) ε0 ≡ 1 − β.
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For any ε ∈ (0, ε0), define

(4) f ε(k) =


k + (1 − θ)k1/ε for 0 ≤ k < 1
max

{
θ(k − 1) + (2 − θ), (2 + β) − β

ε (2 − k)
}

for 1 ≤ k < 2
α(k − 2) + (2 + β) for 2 ≤ k < 2 + β
(αβ + β + 2) + ε

[
k − (2 + β)

]
for k ≥ 2 + β.

It is easy to see that f ε satisfies [F.1] and [F.2] for all ε ∈ (0, ε0). Figure 1 illustrates f ε. In
particular, for ε < ε0, the two affine segments between 1 and 2 do indeed intersect in the
way shown in the diagram.

[F.3] is also satisfied. The only two candidates for a golden rule are k = 1 and k = 2 (see Figure
1 again). Because we’ve assumed that θ < 1− β, we see that f ε(1)− 1 = 1−θ > f ε(2)− 2 = β.

Denote by K the maximum sustainable capital stock under f . These increase with ε. We will
denote the largest of these, Kε0 , by M. No one-period value of output, capital or consumption
over c∗ can exceed this amount, given that we shall always consider κ ∈ (0,M).

Consider the initial stock κ∗ = 2 + β. Define the path k∗ given by kt = 2 + β for t even, kt = 2
for t odd. It is feasible (independently of the specific value of ε ∈ (0, ε0)). The consumption
sequence associated with this path is given by c∗t = c∗ ≡ (α + 1)β for t even, and c∗t = 0 for t
odd. Observe that inft k∗t > γ.

We are going to show that k∗ is potentially δ-optimal.

To this end, pick 0 < ε1 ≤ ε0 such that for all ε ∈ (0, e1),

(5) 2ε < − ln δ.

For ε ∈ (0, ε1), define

(6) uε(c) =


0 for c = 0
δ(c∗−c)/εc for 0 < c ≤ c∗

1 + δ(M−c)/(ε[c−c∗]) for c > c∗.

C 1. Provided that ε ∈ (0, ε1), uε is strictly increasing and continuous, and uε′′(c) > 0 for all
c ∈ (0,M] with c , c∗.

Proof. It is trivial to verify that uε is increasing and continuous. Differentiate uε at any
c ∈ (0, c∗):

uε′(c) = −
δ(c∗−c)/εcc∗ ln δ

c2ε
,

and differentiate again to see that

uε′′(c) =
δ(c∗−c)/εcc∗ ln δ

c4ε

[
(ln δ)

c∗

ε
+ 2c

]
.

Because ln δ < 0, we see that uε′′(c) > 0 if

(ln δ)
c∗

ε
+ 2c < 0

but this inequality is assured by (5).
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A similar argument verifies that uε′′(c) > 0 for any c ∈ (c∗,M].

Our main argument will rely on showing that paths other than k∗ are not optimal. Such an
argument relies on the presumption that an optimal program always exists, which — given
the continuity of uε, along with δ ∈ (0, 1) as well as [F.1] and [F.2] — is an entirely standard
proposition.

For any initial stock κ, denote by Vε(κ) the optimal value of starting from κ (under the utility
function uε). The following claim follows trivially from an inspection of (4) and (6): there is
a function h(ε) with h(ε)→ 0 as ε→ 0 such that

(7) Vε(2 + β) ≥ Vε(Kε) − h(ε),

where Kε, we recall, is the maximum sustainable capital stock under f .

What follows is a list of additional restrictions on ε. For the purposes of readability, it may
be useful to skip ahead to the argument following restriction (17), referring back to these
conditions when needed. First, select η so that

(8) 0 < η < α(1 − β).

Next, define

(9) ν ≡ η/4.

Now find a threshold ε2 ∈ (0, ε1) such that for all ε ∈ (0, ε2),

(10)
1

1 + δ
> uε(c∗ − η) + δh(ε) + δν/ε,

where h(ε) is the function in (7). Such a threshold can obviously be found because all terms
on the right-hand side of (10) converge to 0 as ε→ 0.

Next, choose a positive integer N and a threshold ε3 ∈ (0, ε2) such that for all 0 < ε < ε3,

(11)
1

1 − δ2 > (1 + δ + δ2)uε(M) + (δ3 + · · · + δN+2)uε(c∗ − η) +
δN+3uε(M)

1 − δ
+ δν/ε.

To see why such thresholds must exist, observe that uε(M)→ 1, δν/ε → 0 and uε(c∗−η)→ 0 as
ε→ 0, and δN

→ 0 as N→∞. Consequently, the required thresholds are available provided
that

1

1 − δ2 > 1 + δ + δ2,

but this inequality follows from the given restriction on δ in the statement of the proposition.

Choose ε4 ∈ (0, ε3) such that

(12) f ε(N) (1/2) < c∗ − η
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for all ε ∈ (0, ε4), where the superscript (N) denotes N-fold composition, and N has been
chosen above to satisfy (11). Such a threshold ε2 is available because f ε(N)(1/2) → 1/2 as
ε→ 0, and because c∗ − η = (α + 1)β − η > 3/2, by (8).4

Using (4), the inequality (12) may be interpreted as follows: starting from an initial stock
of 1/2, it will require more than N periods of pure accumulation to bring total output up to
c∗ − η.

For our next restriction, it will be useful to define ζ(ε) to be the intersection of the two affine
segments that define f ε on the interval [1, 2] (see (4) and Figure 1). Formally, ζ(ε) is the
solution in k to

(13) θ(k − 1) + (2 − θ) = (2 + β) −
β

ε
(2 − k).

It is easy to see that ζ(ε) ∈ (1, 2) as long as ε < 1− β (which we’ve assumed already), and that
ζ(ε)→ 2 as ε→ 0. For x > 1, define φ(x) ≡ θ(k − 1) + (2 − θ). Choose ε5 ∈ (0, ε4) such that

(14) φ(N)
ε (3/2) < ζ(ε)

for all ε ∈ (0, ε5). This threshold is available because ζ(ε)→ 2 as ε→ 0, while φ(N)
ε (3/2) < 2.

Using (4), the inequality (14) may be interpreted as follows: starting from an initial stock of
3/2, even N periods of “pure accumulation” will keep total output below the value of 2.

Next, pick ε6 ∈ (0, ε5) such that for all ε ∈ (0, ε6),

(15) 3ε +
2ε2

αβ − ε
< ν.

Our final restriction on ε will require some preparatory work. For k ∈ [0,K], define σ(k) ≡
f ε( f ε(k)) − k.

C 2. σ(2) > σ(k) for every k , 2.

Proof. It is very easy to see, given our restrictions, that there are only two potential
maximizers of σ(k), and they are k = 1 and k = 2. Direct computation shows that
σ(2) = (α + 1)β = c∗. To compute σ(1), note that

f ε(1) = 2 − θ < f ε(3/2) ≤ φ(3/2) ≤ φ(N)(3/2) < ζ(ε),

where the last inequality follows from (14). Therefore f ε( f ε(1)) < 2. It follows that σ(1) < 1,
but this is smaller than c∗ = σ(2). Therefore σ(2) > σ(k) for all k , 2.

Define ξ(ε) by f ε(ξ(ε)) ≡ 2. It is easy to see that

(16) ζ(ε) < ξ(ε) < 2,

where ζ(ε) is defined by the solution to (13).5

4The last observation follows from the fact that (α + 1)β − η > (α + 1)β − α(1 − β) = 2αβ + β − α. Given that
α, β ∈ (0.9, 1), this exceeds 3/2.
5Because f ε(2) > 2, ξ(ε) < 2. Because f ε(ζ(ε)) = θ[ζ(ε) − 1] + (2 − θ) < 2, we have ξ(ε) > ζ(ε).
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Define S to be the maximum value of σ(k) on [0, ξ(ε)]. By Claim 2, we know that

(α + 1)β = σ(2) > S.

Pick ε7 ∈ (0, ε6) such that for all ε ∈ (0, ε7),

(17) ε

[
4

(α + 1)β − S
+ 3

]
< ν.

This completes all our restrictions on ε. In the remainder of the proof, I fix some value of
ε ∈ (0, ε7). To emphasize that ε will remain unchanged for the rest of the argument (and to
simplify notation), I will refer to uε as u and f ε as f , and omit similar superscripts from other
relevant objects (such as value functions or the maximum sustainable capital stock).

I will prove that k∗ is optimal under the utility function u. I proceed in several steps.

We consider below various feasible paths k, from κ∗ as well from other initial stocks. Denote
by Vt the corresponding values generated by k at each date t ≥ 1. The main value of interest
is, of course, V1, which we denote by v(k).

C 3. Let k be a feasible path from some initial stock in [0,K], and suppose that associated
consumption on this path satisfies c1 < c∗ − η. Then v(k) < V(κ∗) − δν/ε.

In particular, no such path can be optimal from κ∗.

Proof. Associated consumption on the path k satisfies c1 < c∗ − η. Therefore

v(k) < u(c∗ − η) + δV2

≤ u(c∗ − η) + δV(K)
≤ u(c∗ − η) + δh(ε) + δV(κ∗)
= u(c∗ − η) + δh(ε) − (1 − δ)V(κ∗) + V(κ∗)

≤ u(c∗ − η) + δh(ε) −
1

1 + δ
+ V(κ∗)

< V(κ∗) − δν/ε,

where the third inequality uses (7), the penultimate inequality employs the fact that V(κ∗) ≥
1/(1 − δ2), which is the value generated by k∗ from κ∗, and the very last inequality invokes
(10).

C 4. Let k be a feasible path from some initial stock in [0,K], and suppose that associated
consumption on this path satisfies ct ≥ c∗ − η for t = 1, 2. Then

k2 <
3
2
.

Proof. Because ε < 1−β (see (10), note first that K ≤M, where M is the maximum sustainable
capital stock when ε = 1 − β. It is easy to see that

(18) M = α + β + 2,
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so that given c1 ≥ c∗ − η, it must be that k1 ≤ (2 + η) + α(1 − β). So

f (k1) ≤ f
(
[2 + η] + α[1 − β]

)
≤ α[η + α(1 − β)] + (2 + β),

so that (remembering c2 ≥ c∗ − η)

k2 ≤ (1 + α)η + α2(1 − β) + (2 − αβ) <
3
2
,

where the second inequality uses (8).6

C 5. Let k be a feasible path from some initial stock in [0,K], and suppose that kt < 3/2 for some
t = 0, 1, 2. Then v(k) ≤ V(κ∗) − δν/ε.

Proof. Suppose that kt < 3/2 for some t ≤ 2. Now recall the two remarks of interpretation
following (12) and (14). They jointly imply that at most one round of consumption c∗ − η or
better can be sustained over the next N + 1 periods. It follows that

v(k) ≤ (1 + δ + δ2)u(M) + (δ3 + · · · + δN+2)u(c∗ − η) +
δN+3u(M)

1 − δ

<
c∗

1 − δ2 − δ
ν/ε = v(k∗) − δν/ε ≤ V(κ∗) − δν/ε.(19)

The first inequality above follows from the fact that consumption in periods 1 and 2 is at
most M. Because at most one further period of consumption c∗−η or better can be sustained
over the next N + 1 periods, I bound total payoff by placing this round in period 3, following
it up with N rounds of consumption c∗ − η or less. Thereafter, I bound consumption by
M again. The second inequality follows from (11), and the very last inequality is true by
definition.

C 6. Let k be a feasible path from some initial stock in [0,K], and suppose that associated
consumption on this path satisfies ct ≥ c∗ − η for t = 1, 2. Then v(k) < V(κ∗) − δν/ε.

In particular, no such path can be optimal from κ∗.

Proof. By Claim 4, k2 < 3
2 . Now apply Claim 5.

Say that a function F(x) is locally (strictly) convex at x if there exists an interval I with x ∈ intI
such that F is (strictly) convex on I.

C 7. For continuous, nondecreasing functions u and g, a discount factor ρ ∈ (0, 1), and
constants y and x, consider the two-period maximization problem:

max
(c1,c2,k)≥0

u(c1) + ρu(c2)

subject to
c1 + k = y and c2 + x = g(k).

Suppose that (a) (c1, c2, k) � 0; (b) u is locally strictly convex around c1 and c2, and (c) f is locally
convex around k.

6Given (8), we have (1 +α)η+α2(1− β) + (2−αβ) < (1 +α)α(1− β) +α2(1− β) + (2−αβ) ≤ 3(1− β) + (2−αβ) ≤ 3/2,
where the last inequality follows from α, β ∈ (0.9, 1).
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Then (c1, c2, k) cannot be a solution to the maximization problem.

Proof. Suppose that (c1, c2, k) � 0. There exists µ > 0 such that u is strictly convex on
[ci−µ, ci +µ] , i = 1, 2, and f is convex on [k−µ, k+µ]. Define (c′1, c

′

2, k
′) ≥ 0 and (c′′1 , c

′′

2 , k
′′) ≥ 0

by k′ ≡ k − µ, k ≡ k + µ, c′1 ≡ c1 + µ, c′1 ≡ c1 − µ, c′2 = g(k − µ) − x, and c′′2 = g(k + µ) − x. Then,
using the local convexity of u and g at their respective points,

1
2

[
u(c′1) + ρu(c′2)

]
+

1
2

[
u(c′′1 ) + ρu(c′′2 )

]
> u

(c′1 + c′2
2

)
+ ρu

(c′1 + c′2
2

)
= u(c1) + ρu

(1
2

g(k − µ) +
1
2

g(k + µ) − x
)

≥ u(c1) + ρu
(
g(k) − x

)
.

But this means that (c1, c2, k) cannot be a solution to the maximization problem (either
(c′1, c

′

2, k
′) ≥ 0 or (c′′1 , c

′′

2 , k
′′) will dominate it).

C 8. Suppose that k is a feasible path from κ > 0, such that for two dates t and s with t < s, we
have 0 < cτ , c∗ for τ = t, s, and kτ , 1, 2, 2 + β for all τ = t, . . . , s − 1. Then k cannot be optimal.

Proof. Fix a feasible program k and let {cτ} be the associated consumption sequence. For
τ = t, . . . , s − 1, define a function rτ(x) by rτ(x) ≡ max{ f (x) − cτ+1, 0}. Define a function g by

(20) g(x) = rs−1 ◦ · · · ◦ rt(x)

for all x > 0.

Suppose, contrary to our assertion, that k is optimal. Consider the problem

(21) max u(c′t) + δs−tu(c′s)

over all feasible paths k′ that have associated consumption c′τ = cτ for τ , t, s. If our
path k is to solve this problem (as it surely must if k is optimal from κ), then in particular
(c′t, c

′
s) = (ct, cs) must solve the maximization problem in Claim 7, with y = f (kt−1), x = ks,

and ρ = δs−t.

Note that g is continuous and nondecreasing. Consider all the input values implicitly defined
by g(kt) — using the functions rτ — up to date s − 1; they coincide exactly with the values
along k. For each such date, f (kτ) > cτ+1 (because cs > 0). Therefore rτ(x) = f (x)− cτ+1 locally
around x = kτ. Because kτ , 1, 2, 2 + β, each of these functions is also locally convex around
kτ. So g is locally convex at k = kt.

Because 0 < cτ , c∗ for τ = t, s, Claim 1 tells us that u is locally strictly convex at ct and
cs. Invoking Claim 7, we see that (21) cannot be solved by (ct, cs, kt). But this means that k
cannot be optimal, a contradiction.

C 9. Let k be optimal from initial stock κ∗. Then, if c1 , c∗, c2 = 0.



12

Proof. Suppose that c1 , c∗. Because c1 , c∗, we know that k1 , 2. By Claim 3, c1 ≥ c∗ − η,
so k1 ≤ 2 + η < 2 + β, by (8).7 By Claim 4, k1 > 3/2 > 1. Finally, by Claim 6, we know that
c2 ≤ c∗ − η.

Therefore, if c2 > 0, we know that c2 ∈ (0, c∗). Now (c1, c2, k1) satisfies all the assumptions of
Claim 8, so that k cannot be optimal, a contradiction.

In what follows, remember that σ(k) ≡ f ( f (k)) − k for k ∈ [0,K], and that ξ(ε) is defined by
f (ξ(ε)) ≡ 2.

C 10. For every k < 2,

(22) σ(2) − σ(k) ≥ min
{(
αβ

ε
− 1

)
(2 − k), (α + 1)β − S

}
> 0,

where S is the maximum value of σ(k) on [0, ξ(ε)].

Proof. Recall from Claim 2 that σ(2) > σ(k) for all k , 2. In particular,

(23) σ(2) − σ(k) ≥ (α + 1)β − S > 0

for all k ∈ [0, ξ(ε)]. When k ∈ (ξ(ε), 2), we know from the definition of ξ(ε) that f (k) > 2, so
that

σ(k) = α

[
β −

β

ε
(2 − k)

]
+ (2 + β) − k.

It follows that

(24) σ(2) − σ(k) = (α + 1)β − α
[
β −

β

ε
(2 − k)

]
− (2 + β) + k =

(
αβ

ε
− 1

)
(2 − k).

Observe that αβ/ε > 1, because (α, β) ≥ (0.9, 0.9) and ε < 1 − β.

Combining (23) and (24), we must conclude that (22) holds.

C 11. Suppose that 0 < κ = κ∗ − ∆, for some ∆ > 0. Then associated consumption along some
feasible path k from κ can coincide with the sequence (c∗, 0, c∗, 0, c∗, . . .), starting from date 1, for at
most T(∆) consecutive periods, where

(25) T(∆) ≤ R(∆, ε) ≡ 4 max
{

ε
(αβ − ε)∆

,
1

(α + 1)β − S

}
+ 1.

Proof. Consider associated consumption along some feasible path k from κ, where 0 < κ =
κ∗−∆. Suppose that starting from date 1, it coincides with (c∗, 0, c∗, 0, c∗, . . .) for T consecutive
periods (at this stage T may be infinite). Then for every odd t ≤ T − 2, it is easy to see that
kt < 2, and invoking Claim 10,

kt+2 ≤ kt − [σ(2) − σ(kt)]

≤ kt −min
{(
αβ

ε
− 1

)
(2 − kt), (α + 1)β − S

}
,

7(8) informs us that η < α(1 − β) < 0.1, while β > 0.9.
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where, as before, S is the maximum value of σ(k) on [0, ξ(ε)]. By (22), kt+2 < kt for all odd
t ≤ T − 2, so that

kt+2 ≤ kt −min
{(
αβ

ε
− 1

)
(2 − k1), (α + 1)β − S

}
.

However, as long as T ≥ 2, we know that 2− k1 = κ∗ − κ = ∆, so that for every odd 3 ≤ t ≤ T,

0 ≤ kt ≤ 2 −
t − 1

2
min

{(
αβ

ε
− 1

)
∆, (α + 1)β − S

}
.

Consequently

T(∆) ≤ 4 max
{

ε
(αβ − ε)∆

,
1

(α + 1)β − S

}
+ 1.

C 12. Let k be optimal from κ∗. Then c1 ≥ c∗.

Proof. Suppose not. Then (using Claim 3) we know that 0 < c1 < c∗. By Claim 9, c2 = 0. I
now assert that:

(26) ct = c∗ when t is odd, and ct = 0 when t is even.

for all t ≥ 3. Suppose this is false; consider the first odd date t ≥ 3 for which either ct , c∗
or ct+1 , 0. Consider the continuation program from date t with initial stock kt−1. Because
c1 < c∗ and moreover, (cs, cs+1) = (c∗, 0) for all 3 ≤ s < t (with s odd), it must be the case that
kt−1 > κ∗. Moreover, the continuation path of k is optimal from kt−1. It follows from Claims
3 and 6 that ct ≥ c∗ − η and ct+1 < c∗ − η.

Therefore if ct , c∗, ct must be strictly positive, while if ct+1 > 0, it must be that ct+1 , c∗.
Thus, in either case, at the first date s in which our assertion fails (t or t + 1), 0 < cs , c∗.

It is easy to check that for all 1 ≤ τ ≥ s, 2 + β > kτ > 2 for τ odd and kτ > 2 + β for τ
even. Therefore all the conditions of Claim 8 are satisfied, so that k must be suboptimal, a
contradiction. Therefore (26) is true.

We have therefore shown that the consumption sequence associated with k satisfies c1 < c∗1,
and ct = c∗t for all t ≥ 2, where {c∗t} is the consumption sequence associated with k∗. Once
again, this contradicts the optimality of k, simply because k∗ is feasible from κ∗.

We now complete the proof of the proposition. It will suffice to show that if k is an optimal
program from κ∗, then

(27) c1 = c∗ and c2 = 0.

By Claim 12, we know that c1 ≥ c∗. Moreover, Claim 9 tells us that if c1 > c∗, then c2 = 0.
Therefore, if (27) is false, we have

(28) c1 ≥ c∗ and c2 ≥ 0, with exactly one strict inequality.

Let ∆ ≡ max{c1 − c∗, c2}. In what follows, we explore the properties of the continuation path
from κ = k2. By (28), we have κ∗ − κ = ∆ > 0.
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By Claim 11, we know that the continuation consumption sequence (starting from date 2)
can coincide with (c∗, 0, c∗, 0, . . . ) for at most T(∆) periods, where T(∆) satisfies (25). Let τ be
the very first date (starting from 3) at which the coincidence ends. Then

(29) τ ≤ T(∆) + 2 ≤ R(∆, ε) + 3.

We first consider two cases (they do not exhaust all the possibilities).

Case 1. cτ−1 = 0 and cτ < c∗ − η. Consider the continuation program from kτ−1 and apply
Claim 3. It is immediate that

(30) Vτ ≤ V(κ∗) − δν/ε.

Case 2. cτ−1 = c∗ and cτ ≥ c∗ − η. Consider the continuation program from kτ−2 and apply
Claim 6. It is immediate that

(31) Vτ−1 ≤ V(κ∗) − δν/ε.

We will deal with both these cases together. Let T be a time index that stands for either τ or
τ − 1, depending on whether we are in Case 1 or Case 2.

Consider an alternative path k′ in which c′1 is reduced from c1 to c∗, c′2 is reduced from c2 to 0
(only one strict reduction is involved, by (28)) and which coincides with {c∗, 0, c∗, 0, . . .} up to
and including date T − 1. Notice that k′T−1 = κ∗. From date T onwards, let k′ coincide with
an optimal path from κ∗.

Discounting all payoffs to period 1, and letting L stand for the utility loss in periods 1 or 2
(in moving from k to k′), it is easy to see that

v(k′) − v(k) = δT−1 [V(κ∗) − VT] − L
≥ δT−1δν/ε − L
≥ δR(∆,ε)+2δν/ε − L,(32)

where the first of the inequalities uses (30) and (31), and the second employs (29).

Now we estimate L. If the reduction occurs in period 1,

L = δ(M−c∗−∆)/ε∆
≤ δα(1−β)/ε∆

≤ δη/ε∆,

where the first inequality follows from the fact that ∆ ≤ 2,8 and M = α + β + 2 (see (18)), and
the second inequality follows from (8).

If the reduction occurs in period 2,

L = δ(c∗−∆)/ε∆
≤ δη/ε∆,

where the inequality follows from the fact that c2 ≤ c∗ − η (by Claims 3 and 6), so that
c∗ − ∆ = c∗ − c2 ≥ η. Therefore in either case,

(33) L ≤ δη/ε∆,

8Available output is (α + 1)β + 2, while c∗ = (α + 1)β.
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where

(34) 0 < ∆ ≤ 2

(The last inequality follows from the fact that c∗ − η = (α + 1)β − η < 2.)

Combining (32) and (33), we see that

(35) v(k′) − v(k) ≥ δR(∆,ε)+2δν/ε − δη/ε∆.

I claim that for all ∆ ∈ (0, 2],

(36)
ν
ε

+ R(∆, ε) + 2 <
η

ε∆
.

We recall the definition of R(∆, ε) from (25) and accordingly break up the proof of (36) into
two steps. First suppose that

R(∆, ε) =
4ε

(αβ − ε)∆
+ 1.

Then, after slight manipulation, we see that (36) is true if

(37) ν + 3ε <
1
∆

[
η −

4ε2

αβ − ε

]
.

(9) and (15) tell us that the right-hand side of (37) is certainly positive. So, invoking (34), a
sufficient condition for (37) to hold is

ν + 3ε <
1
2

[
η −

4ε2

αβ − ε

]
.

Rearranging terms and using (9), this is equivalent to the inequality

3ε +
2ε2

αβ − ε
<
η

2
− ν = ν,

which is guaranteed by (15).

Second, suppose that

R(∆, ε) =
4

(α + 1)β − S
+ 1.

Then (36) is once again true if

(38)
ν
ε

+
4

(α + 1)β − S
+ 3 <

η

ε∆
.

To establish (38), it is sufficient to verify that

ε

[
4

(α + 1)β − S
+ 3

]
<

η

c∗ − η
− ν = ν,

where the equality invokes (9). But this is guaranteed by (17).

This establishes (36). However, combining (35) and (36), we are forced to conclude that
v(k′) > v(k), but this contradicts the presumed optimality of k. Therefore (27) must indeed
be true in both Cases 1 and 2.

That leaves only
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Case 3. 0 < cT , c∗, with the additional proviso that

(39) cT ≥ c∗ − η if cT−1 = 0.

Recall that (28) holds. Therefore we have either c1 > c∗ or c2 > 0 (but not both). We also
know from Claims 3 and 6 that c2 ≤ c∗ − η. Therefore, we have a date t (equal to 1 or 2) and
another date s (equal to T > 2) at which 0 < cτ , c∗. Moreover, for any τ strictly between
these two dates the consumption path has cτ = c∗ for τ odd, and cτ = 0 for τ even.

Now we make the following observations about the path of capital stocks:

(a) At no date t between 1 and T can kt be less than 3/2. For if this were true, then by Claim
5, we see that (30) must hold for some τ ≤ T(∆) + 2, and exactly the same argument for Cases
1 and 2 applies to obtain a contradiction. In particular, kt , 1 for all such dates.

(b) For τ odd, we have kτ < 2.

(c) For τ even, we have kτ < 2 +β. Moreover, for τ even, kτ , 2. To see this, note that because
τ is even, cτ = 0. By (39), we see that cτ+1 ≥ c∗ − η whether T > τ + 1 or T = τ + 1. Therefore
kτ+1 ≤ f (kτ) − c∗ + η = 2 + β − (α + 1)β + η < 3/2, using (8.9). But this contradicts part (a). So
kτ , 2 for τ even.

Combining (a)–(c), we see that for all τ = t, . . . , s−1, kτ , 1, 2, 2+β. Now all the conditions of
Claim 8 are satisfied, which means that k cannot be optimal. This contradiction completes
the proof of the proposition.
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