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Abstract

We propose some practical solutions for causal effects estimation when compliance to as-

signments is only partial and some of the standard assumptions do not hold. We follow the

potential outcome approach but in contrast to Imbens and Rubin (1997), we require no prior

classification of the compliance behaviour. When noncompliance is not ignorable, it is known

that adjusting for arbitrary covariates can actually increase the estimation bias. We propose

an approach where a covariate is adjusted for only when the estimate of the selection bias of

the experiment as provided by that covariate is consistent with the data and prior information

on the study. Next, we investigate cases when the overlap assumption does not hold and, on

the basis of their covariates, some units are excluded from the experiment or equivalently, never

comply with their assignments. In that context, we show that a consistent estimation of the

causal effect of the treatment is possible based on a regression model estimation of the con-

ditional expectation of the outcome given the covariates. We illustrate the methodology with

several examples such as the access to influenza vaccine experiment (McDonald et al (1992) and

the PROGRESA experiment (Shultz (2004)).
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1 Introduction

Randomized experiments are a widely accepted approach to infer causal relations in statis-

tics and social sciences. The idea dates back at least to Neyman (1923) and Fisher (1935) and has

been extended by D. Rubin and co-authors (Rubin (1974), Rubin (1978), Rosembaum and Rubin

(1983)) to observational studies and other more general experimental designs. In this approach,

causality is defined in terms of potential outcomes. The causal effect of a treatment, say Treatment

1 (compared to another treatment, Treatment 0) on the variable Y and on the statistical unit i is

defined as Yi(1)−Yi(0) where Yi(j) is the value we would observe on unit i if it receives Treatment

j. The estimation of this effect is problematic because unit i cannot be given both treatments.

Randomizing the assignment of units to treatments allows us to overcome this difficulty. To esti-

mate the causal effect of a treatment, two random samples of units are selected, the first group is

assigned to Treatment 0 and the second group to Treatment 1. The difference in the sample means

of Y (or some statistic of interest) over the two groups is used as an estimate of the causal effect

of the treatment. The main idea is that randomization eliminates (at least in theory) any system-

atic difference between the two samples. We refer the reader to Holland (1986) for an interesting

discussion of causality in statistics.

But in practice, it happens often that some units do not comply with their assignments.

On a large scale, noncompliance limits the internal validity of the experiment and may introduce

severe bias in the estimation of the causal effect of the experiment. A trivial example of the effect

of noncompliance is one in which a harmful drug is administered and units assigned to the drug

who recover after the experiment are merely those who did not comply with their assignment. In

general, in presence of noncompliance, the causal effect of the treatment is more difficult to define

(and less useful) as it depends on the treatment assigned to.

One widely used approach to deal with noncompliance is Intention-to-Treat (ITT) analysis

(see e.g. Lee et al (1991)). ITT proposes precisely to ignore the noncompliance problem and

to use the effect of the assignment as a proxy for the treatment effect. In ITT, one sees the

noncompliance behaviour as part of the response to the treatment. Therefore, an ITT estimate

can be interpreted as the “use-effectiveness” of the treatment. It is particularly useful when the

noncompliance behaviour is believed to be stable over time. However, the ITT estimates can be

strikingly different from the real treatment effect particularly when noncompliance is severe and/or

changes over time. This could be a problem if the experimenter is mainly interested in the real
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effect of the treatment.

An alternative to the Intent-to-Treat estimate is the Local Average Treatment Effect (LATE)

proposed by Angrist et al (1996) (see also Imbens and Rubin (1997)). The LATE estimate is the

ITT estimate divided by the proportion of units that comply with their assignment. Assuming four

patterns of compliance behavior (compliers, never-takers, always-takers and defiers), these authors

have shown (under some additional assumptions) that the LATE estimate can be given a causal

interpretation as the causal effect of the treatment over the sub-population of compliers. The

LATE estimate is interesting because compliers are precisely the units for which speaking of the

causal effect of the treatment makes sense. But the approach is of a limited applicability since this

sub-population of compliers is (generally) not known and cannot be defined precisely. Moreover,

assuming such a rigid classification of compliance behavior may limit the external validity of the

method.

In this paper, we take the approach that compliance behavior is driven by covariates and

that there is no rigid classification of the compliance behavior. In order to define precisely the

causal effect of the treatment we make the so-called exclusion restriction assumption (Angrist et

al (2002)), assuming that Y (t, d) and Y (t′, d) have the same distribution for any t, t′, d ∈ {0, 1}.
This amounts to assuming that the assignment has no direct effect on the outcome but through the

received treatment. In this framework, we ask two questions. Is it possible to consistently estimate

the causal effect of the treatment if:

1. the noncompliance behavior is not ignorable given the observed covariate?

2. some sub-population (called the “sequel taboo population”) can never be enticed to take the

treatments?

Regarding question 1 we show that when noncompliance is not ignorable given the available

covariates, controlling for arbitrary covariates can actually worsen the estimation bias. We then

propose an approach where prior information on the study is combined with the data to determine

which covariates one should be adjusting for. The idea is based on the fact that adjusting for

a covariate corrects only for the selection bias of the experiment as seen through that covariate

(after conditioning on that covariate). Therefore adjusting for a covariate can increase the bias

if the covariate has a wrong picture of the selection bias of the experiment. When appropriate

information is available, it is possible to find how well a covariate will estimate the selection bias

of the experiment and whether that covariate should be adjusted for or not.

Question 2 is an example where the so-called overlapping assumption breaks down. It is

quite frequent in medical studies where units are screened based on their covariates before partici-

3



pating in the experiments and yet the experimenter would like to estimate the causal effect of the

treatment over the whole population (See also Wantchekon (2003) for a randomized experiment

in political science where this problem arises1 ). In this paper, we formalize the selection of the

units in this type of experiments as a sequence of negative binomial trials and we show that if a

(global) representation of the conditional expectation of the outcome given the covariates exists

then it can be consistently estimated from the data and used to estimate the causal treatment over

the whole population (including the taboo sub-population). By estimating the potential treatment

effect on the untreatable units, that is, units that cannot be assigned neither to Treatment 1 nor

to Treatment 0, our method provides a general and formal test of external validity of randomized

experiments. This could turn out to be a very useful exercise, especially in medical trials where

the experimenter is interested estimating the effect of a drug on a sub-population that cannot

participate in the experiment (presumably because of potential side effects of the drug).

The rest of the paper is organized as follows. In Section 2, we develop the basic framework

for covariate-based bias correction. This classical material is presented here for completeness. Its

presentation also allows us to introduce the estimators that we use next. In Section 3.1, we present

our new method for bias reduction in the presence of unobserved covariates and in Section 3.2, we

show how to consistently estimate the causal treatment effect in presence of a taboo sub-population.

We present several examples to illustrate our methods in Section 4. We then present a re-analysis

of an experiment to access the effect of an influenza vaccine conducted by McDonald et al (1992)

(see also Hirano et al (2000)).

2 Noncompliance bias correction with observed covariates

In this section, we present the basic framework of the potential outcome model for causal

inference in randomized experiments with noncompliance. We include these well known results

here to make it easier for the reader to follow our discussion in Section 3. The basic assumptions

are detailed in Section 2.1. Some consistent estimators of the causal effect are presented in Section

2.2.
1Wantchekon (2003) presents results from an experiment in which non-competitive electoral districts were ran-

domly assigned to “purified” national public goods and redistributive platforms by candidates competing in the 2001

presidential elections in Benin. We may want to estimate the potential causal effect of the treatment if competitive

and ethnically diverse districts have participated in the experiment.
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2.1 The basic framework

A random sample of n units from a reference population is taken and each unit is assigned

to Treatment 1 or Treatment 0. Let (T1, . . . , Tn) be the random vector of assignments; Ti =

j if unit i is assigned to Treatment j, j = 0, 1 and i = 1, . . . , n. Define the random variable

Ci = 1 if unit i complies with its assignment and 0 if not. Finally define Di to be the treatment

actually received by unit i. Di = 1 if unit i actually receives Treatment 1 and Di = 0 it unit i

actually receives Treatment 0. If Ti = t and Di = d, we observe the outcome Yi(t, d). We assume

that Yi(t, d) is a random variable with finite expectation. Let Xi be a vector of covariates (pre-

treatment variables) observed on unit i before its assignment to a treatment. We assume that

(Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1), Xi)1≤i≤n are independent and identically distributed (i.i.d.) and

when there is no ambiguity, we shall omit the subscript i when referring to an arbitrary element of

the sample. Following Angrist et al (1996) we assume that:

Assumption (A1):

Pr (Yi(0, d) ∈ ·|X) = Pr (Yi(1, d) ∈ ·|X) , a.s. for d = 0, 1. (1)

The idea behind (A1) is that the assignment variable T can affect the outcome variable

Y only through the received treatment variable D so that the conditional distribution of Y (0, d)

and Y (1, d) given X are the same for d = 0, 1. We find this assumption quite realistic in most

applications. But it can be questionable in situations where assignment to a given treatment can

significantly change the behavior of the subject and therefore have a direct impact on the outcome.

For d = 0, 1, let µd(x) := E (Y (0, d)|X = x) = E (Y (1, d)|X = x) and µd := E (Y (0, d)) =

E (Y (1, d)) where the second equalities follow from (A1). We are interested in the causal effect of

Treatment 1 versus Treatment 0 at covariate level X = x defined as

τ(x) = µ1(x)− µ0(x), (2)

and most importantly, the causal effect of the treatment over the population defined as:

τp = µ1 − µ0. (3)

The well-known problem in estimating τ(x) and τp is that all the outcome variables Yi(t, d)

cannot be observed in the same time. Throughout the paper, we assume that the assignment is

ignorable given the covariates; we assume that:

Assumption (A2):

(Yi(0, 0), Yi(0, 1), Yi(1, 0), Yi(1, 1)) ⊥ Ti|Xi, 1 ≤ i ≤ n, (4)
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where for random objects X,Y the notation X ⊥ Y means that X and Y are independent

and for random variables X,Y, Z, we write X ⊥ Y |Z to say that X and Y are conditionally

independent given Z. If we have Cov (X, Y |Z) := E (XY |Z) − E (X|Z) E (Y |Z) = 0 we shall say

that X and Y are uncorrelated given Z. Similarly, if Cov(X,Y ) := E(XY )− E(X)E(Y ) = 0, we

say that X and Y are uncorrelated.

Remark 1 1. Assumption (A2) is not restrictive in randomized experiments. Often the assign-

ments are actually randomized independently from any covariate. (A2) also includes the case

of stratified randomization where the blocks are defined on some covariate X.

2. One important consequence of (A1) and (A2) is that for all purposes, we can now define

the outcome variable Y without mentioning the assignment under which it is observed. More

precisely, let Y (d) = Y (0, d)1{T=0} + Y (1, d)1{T=1}. For d = 0, 1, we have:

Pr (Y (d) ∈ A|X) = Pr (Y (0, d) ∈ A|T = 0, X) Pr(T = 0|X)

+ Pr (Y (1, d) ∈ A|T = 1, X) Pr(T = 1|X)

= Pr (Y (0, d) ∈ A|X) Pr(T = 0|X)

+ Pr (Y (1, d) ∈ A|X) Pr(T = 1|X), (by (A2))

= Pr (Y (0, d) ∈ A|X) = Pr (Y (1, d) ∈ A|X) , (by (A1)) .

For the rest of the paper we always assume (A1) and (A2) and write Yi(d) for the outcome

of unit i that receives treatment d without necessarily mentioning its assignment.

The most important and certainly most controversial assumptions in randomized experi-

ments are the next two assumptions.

Assumption (A3):

(Yi(0), Yi(1)) ⊥ Ci|(Ti, Xi), 1 ≤ i ≤ n, (5)

Define e(x) = Pr(D = 1|X = x) as the probability of taking Treatment 1. This function is

called the propensity score of the experiment.

Assumption (A4): For any x ∈ X,

0 < e(x) < 1. (6)
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Assumption (A3) asserts that noncompliance is ignorable given the covariate vector X so

that it can affect the outcome Y (i) only through X, and (A4) is the so-called overlapping assumption

that says that every unit have a positive chance of taking both treatments.

These assumptions are well-known and are at the heart of most covariate-based adjustments

that have been proposed in observational studies (see e.g. Rosenbaum (2002)). In practice, they are

very difficult to check. Most of the time one has to resort to specific knowledge of the phenomenon

under study to judge whether these assumptions are reasonable given the covariates at hand. Our

objective in this work is to show, in some special cases where these assumptions are known not to

hold, that it is still possible to limit the bias in estimating the causal effect of the treatment.

Assumption (A4) also allows us to define E (Y (d)|X,D = d) as

E [Y (d)|X, D = d] :=
E

[
1{D=d}Y (d)|X]

Pr [D = d|X]
.

It can be easily seen that under the assumptions enumerated above, the receipt of treatment

is ignorable and that τP is consistently estimable.

Proposition 1 Under (A1)-(A4), we have:

Y (d) ⊥ D|X, d ∈ {0, 1}. (7)

This implies that E (Y (d)|X,D = d) = E (Y (d)|X) so that τP is consistently estimable from the

data available.

Although Proposition 1 is directly usable to estimate τP , very often in practice, particularly

when the dimension of the covariates X is large, it is more efficient to adjust for noncompliance on

low-dimensional covariates. Rosembaum and Rubin (1983) introduced the concept of propensity

scores and showed that it has that desired property. Their result in our context is as follows:

Proposition 2 Assume (A1)-(A4). Let b : X → Y be a measurable function such that there exist

measurable functions g : Y → R for which e(x) = g(b(x)), x ∈ X . We have:

(i)

X ⊥ D|b(X). (8)

(ii)

(Y (0), Y (1)) ⊥ D|b(X), (9)

Moreover if b : X → Y is any measurable function that satisfies (i) and (ii) above then

necessarily, e(x) = q(b(x)) for some measurable function q.
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2.2 Some practical implications of Propositions 1 and 2

Here we explore briefly some practical implications of Propositions 1 and 2 in estimating τP

in presence of noncompliance. There are many standard ways to adjust for covariates in randomized

experiments that can be used here. We consider the use of the propensity scores and the regression

functions. For more details, and for a review see Imbens (2003).

2.2.1 Weighting on propensity scores

It is clear from Proposition 1 that:

E [Y (d)|X] = E [Y (d)|X, D = d]

= E
[

1{D=d}Y (d)
Pr(D = d|X)

|X
]

.

Therefore τ(X) = E
{

1{D=1}Y (1)

e(X) |X
}
−E

{
1{D=0}Y (0)

1−e(X) |X
}

. If ê(x) denotes a consistent estimate of

e, τP can be consistently estimated by:

τ̂1 =
1
n

n∑

i=1

(
1{Di=1}
ê(Xi)

− 1{D=0}
1− ê(Xi)

)
Yi, (10)

where Yi = 1{Di=1}Yi(1) + 1{Di=0}Yi(0) is the outcome observed on the i-th unit.

We can estimate e(x) with various parametric or nonparametric methods using the observed

value of the variable (D, X). In the examples that we consider below, we use a parametric logistic

regression model.

The estimator (10) is well known in randomized experiments. It has been shown by Hirano

et al (2003) (Theorem 1) that under some regularity conditions, if e1 and e0 are consistently

estimated, τ̂1 is consistent, efficient and asymptotically normal.

2.2.2 Correction based on the regression function

Let µd(x) = E (Y (d)|X). Again from Proposition 1 we have E
(
Y (d)|X,1{D=d}

)
= E (Y (d)|X).

Therefore, we can use the observed values on (Y,X) on the units that received Treatment d to ob-

tain a consistent estimate µ̂d(x) for µd(x), d = 0, 1. This can be done using various parametric and

nonparametric regression methods. Then a consistent estimate for τ is given by:

τ̂2 =
1
n

n∑

i=1

(µ̂1(Xi)− µ̂0(Xi)) . (11)
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2.2.3 Subclassification and matching on the propensity scores

As permitted by Proposition 2, the propensity score can also be used to generate a new

estimator that compares the outcome variables for similar levels of the propensity score, which is

the so-called sub-classification on the propensity score method. Suppose we have an estimate ê of

the propensity score e. Let 0 = b1 < b2 · · · < bL+1 = 1 be a subdivision of [0, 1] constructed such

that the values ê(Xi) for which ê(Xi) ∈ Bl := [bl, bl+1] are approximately equal. For l = 1, . . . , L,

let:

nl =
n∑

i=1

1Bl
(ê(Xi)) , (12)

be the size of Bl, and

τ̂ (l) =
∑n

i=1 YiDi1Bl
(ê(Xi))∑n

i=1 Di1Bl
(ê(Xi))

−
∑n

i=1 Yi(1−Di)1Bl
(ê(Xi))∑n

i=1(1−Di)1Bl
(ê(Xi))

. (13)

be the estimate of the causal effect for units in Bl. Then the subclassification estimator for τP is

given by:

τ̂3 =
L∑

l=1

nl

n
τ̂ (l). (14)

The matching method (see e.g. Imbens (2003) and Diamond and Seckon (2005)) is a special

case of subclassification with one treated unit and a fixed number M of control units (typically

M = 1) per Bl. Matching is particularly useful when the number of control units is much larger

than the number of treated units.

3 Inference under violated assumptions

3.1 Effect of unobserved covariates

In this section, we no longer assume (A3). So it is possible that there is some unobserved

covariate that is linked to the outcome variable and to the compliance behaviour. As discussed

in the introduction, it is particularly difficult to make valid statistical inference in randomized

experiments with noncompliance when the noncompliance behaviour is not ignorable. That is

when Assumption (A3) doesn’t hold. When faced with nonignorable noncompliance behaviour,

the general approach in practice seems to include as much covariables as possible in the analysis.

But as shown by Spirtes (1997) when important covariables are unobserved, it is perfectly possible

that controlling for all the observed covariates increases the estimation bias. In other words, unless

all the important covariates related to the experiment are observed, adjusting for the observed

covariates can actually increase the estimation bias.
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In this work, we argue that in randomized experiment with noncompliance, one should be

more caution and select only the covariates that can reproduce roughly well the selection bias of the

experiment. We start with a theoretical result that will help clarify what we meant in the sentence

above. Then we will discuss the details of how to implement the approach.

Formally, we want to answer two questions. What is the bias incurred if we proceed in

estimating the causal effect τp without the unobserved covariate? Can we expect to reduce that

bias compared to the situation where no covariates are controlled for? To simplify the notation, we

write ed(x) = Pr(D = d|X = x), d = 0, 1, so that e1(x) = e(x) and e0(x) = 1 − e(x). Also recall

that µd(X) = E (Y (d)|X) .

Theorem 3 Assume (A1), (A2), (A4)and for d = 0, 1, define

εd(X) = E
[
1{D=d}Y (d)|X]− ed(X)µd(X). (15)

Then for d = 0, 1,

E
[
Y (d)|X,1{D=d}

]
= E

[
1{D=d}Y (d)

ed(X)
|X

]
= E (Y (d)|X) +

εd(X)
ed(X)

. (16)

A first approximation of the expectation of the bias term Bd(X) := εd(X)
ed(X) gives:

E [Bd(X)] ≈ δd

[
Cov

(
1{D=d}, Y (d)

)− Cov (ed(X), µd(X))
]
, (17)

where δd = Pr(D = d)−1

[
E(e2

d(X))
[E(ed(X))]2

− Cov
[

ed(X)
E(ed(X)) ,

εd(X)
E(εd(X))

]]
.

Proof. Equation (16) is trivial. For random variables X and Y with a finite second moment,

it is easily seen that:

X

Y
− E(X)
E(Y )

=
XE(Y )− Y E(X)

(E(Y ))2
[
1 + Y−E(Y )

E(Y )

] ≈ XE(Y )− Y E(X)
(E(Y ))2

(
1− Y − E(Y )

E(Y )

)

Taking the expectation yields:

E
[
X

Y

]
≈ E(X)
E(Y )

(
E(Y 2)

(E(Y ))2
− Cov (X, Y )
E(X)E(Y )

)

Since E (ed(X)) = Pr(D = d) and E (εd(X)) = Cov
(
1{D=d}, Y (d)

)−Cov (ed(X), µd(X)), applying

the approximation formula above with X = εd(X) and Y = ed(X) gives:

E
[
εd(X)
ed(X)

]
≈ δd

[
Cov

(
1{D=d}, Y (d)

)− Cov (ed(X), µd(X))
]
, (18)

where δd is given as above.
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Since (A3) doesn’t hold, if we use the data from the experiment to estimate µd(X) =

E(Yd|X), what we will actually be estimating is E
(
Yd|X,1{D=d}

)
. The bias incured is E

(
Yd|X,1{D=d}

)−
µd(X) and Theorem 3 shows that the expected bias is approximately

E [Bd(X)] ≈ δd

[
Cov

(
1{D=d}, Y (d)

)− Cov (ed(X), µd(X))
]
. Note that Cov

(
1{D=d}, Y (d)

)
/Pr(D =

d) is the overall selection bias due to noncompliance in estimating E(Y (d)). Now, the term

Cov (ed(X), µd(X)) /Pr(D = d) can be seen as the estimate provided by the covariate X of that

selection bias Cov
(
1{D=d}, Y (d)

)
/Pr(D = d). Therefore if X provides a correct estimate of the

selection bias, that is if if Cov (ed(X), µd(X)) ≈ Cov
(
1{D=d}, Y (d)

)
for d = 0, 1, then adjusting on

X will reduce the selection bias. But if X is such that Cov (ed(X), µd(X)) and Cov
(
1{D=d}, Y (d)

)

are very different quantities, it is best not to adjust on X as this will increase the estimation bias.

When prior information exists, this result can be used to screen to set of observed covariates in

order to used the most relevant.

3.1.1 Covariates selection with prior information

As discussed above, our selection method consists in finding all the covariates X for which

Cov (ed(X), µd(X)) and Cov
(
1{D=d}, Y (d)

)
are roughly equal. Since neither of these quantities

can be computed is most experiment, we settle with a less rigorous rule: select all the covariates

for which Cov (ed(X), µd(X)) and Cov
(
1{D=d}, Y (d)

)
have the same signs. Although the actual

values cannot be estimated, in many cases, it is possible to use prior information on the experiment

to find an estimate of the signs of the quantities.

Since Cov
(
1{D=d}, Y (d)

)
/Pr(D = d) = E (Y (d)|D = d) − E (Y (d)), we need to compare

the overall expected outcome to the expected outcome of units that choose to receive d. Such

information is available in many studies.

To obtain the sign of Cov (ed(X), µd(X)), we rely on the following well known result. Let Y

be a random variable and f and g two monoton functions. If f and g has the same monotonicity then

Cov (f(Y ), g(Y )) ≥ 0 otherwise Cov (f(Y ), g(Y )) ≤ 0. In our case, the monotonicity of ed(x) can

be obtained by estimating that function from data. The monotonicity of µd(x) = E (Y (d)|X = x)

cannot be estimated from the data in general. But in many studies this information can be available.

Here is an example of how to apply the method. Assume that from prior information, we

know the sign of E (Y (d)|D = d)−E (Y (d)), d = 0, 1. For example, assume that E (Y (1)|D = 1)−
E (Y (1)) ≥ 0 and that E (Y (0)|D = 0) − E (Y (0)) ≤ 0. Note that this information does not say

anything about the effect of the treatment but is related instead to what is known about the

noncompliance behavior. For example, E (Y (1)|D = 1)−E (Y (1)) ≥ 0 simply says, speaking about
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the outcome when Treatment 1 is received, that those who choose to receive that treatment happen

to have (on average) a larger value of the outcome. Let X be the observed covariate vector and also

assume that prior information exists which gives us the monotonicity of µd(x). To fix the ideas,

assume that µd(x) is nondecreasing for d = 0, 1. Let ê1(x) be an estimate of e1(x) obtained from

the data.

Our rule to decide whether to control for X is as follows. If we find out that ê1(x) is nonde-

creasing in x, then it is likely that Cov (e1(X), µ1(X)) ≥ 0 which is consistent with E (Y (1)|D = 1)−
E (Y (1)) ≥ 0. Similarly, since µ0(x) is nondecreasing , we likely have Cov (e0(X), µ0(X)) ≤ 0 which

is consistent with E (Y (0)|D = 0) − E (Y (0)) ≤ 0. Therefore X will be included in our list of po-

tentially useful covariates. But if we find out that ê1(x) is nonincreasing (in x) then X is likely to

increase the estimation bias and should not be used.

The method is repeated for each measured covariate to determine the final set of covariates

to be used to control for the noncompliance bias. We use that method to re-analyze a randomized

experiment with encouragement designed to measure the effect of an influenza vaccine. See Section

4.2.

3.2 Inference in taboo population

In this section, we deal with situations where it is not actually possible to apply the treat-

ments to the whole population. Assume that there exist thresholds −∞ < z(t) ≤ ∞ and continuous

functions Z(t) : X → R (t = 0, 1) such that any unit i with covariate Xi for which Z(t)(Xi) > z(j)

cannot be given Treatment t (or equivalently that such unit will never comply with Treatment t).

Therefore we have e1(x) = e(x) = 0 for Z(1)(x) > z(1) and e0(x) = 1−e(x) = 0 for Z(0)(x) > z(0) so

that (A4) does not hold. We call the sub-populations {x : Z(1)(x) > z(1)} and {x : Z(0)(x) > z(0)}
taboo sub-populations. A common example where this model arises naturally is in medical studies

where units are first screened on some pre-treatment variables, the so-called eligibility criteria, in

order to determine their participation to the experiment. Although only a subset of the whole pop-

ulation can participate to the experiment, sometimes one is still interested in inferring the causal

effect of the treatment on the whole population from such an experiment. We argue here that if a

global model for the treatment effect is plausible then the effect of the treatment over the whole

population is estimable.

We assume that the assignments to the two arms of the experiment is completely randomized

provided the eligibility criterion are met. To simplify the theoretical analysis of the experiment,

we assume that the units are assigned until the first time a given number of units, say n1, is

assigned to Treatment 1. This generates a sequence of negative binomial trials. For i ≥ 1, let
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(Y ∗
i (0), Y ∗

i (1), X∗
i , T ∗i ) be a sequence of i.i.d. random variables such that T ∗i and (Y ∗

i (0), Y ∗
i (1))

are independent given X∗
i . We assume that the conditional expectation of Y ∗(d) has a global

representation as functions of the covariates:

Assumption (A5): There exist known measurable functions (h(d)
1 , . . . , h

(d)
pd ) and parameters β(d) =

(β(d)
1 , . . . , β

(d)
pd )′ such that

E (Y ∗(d)|X∗ = x) = Hd(β, x) =
pd∑

i=1

β
(d)
i h

(d)
i (x), d = 0, 1. (19)

The additive model postulated in Assumption (A5) is quite flexible. By allowing the user to

specify the component functions h
(d)
i , that approach makes it easier to use prior knowledge available

on the dependence between the outcome and the covariates. When no such information exists, It

is always possible to use a more systematic set of functions like 1, X1, X2, . . . , Xp, X1X2, X1X3 . . .,

where here, Xi is the i-th component of X. Another possible approach is to use a nonparametric

additive model. In this model, the regression function is taken as Hd(β, x) =
∑pd

i=1 h
(d)
i (x), where

h
(d)
i is an unknown function and estimated nonparametrically, for example as in Horowitz and

Mammen (2004).

For t ∈ {0, 1}, define τ
(t)
0 = 0 and for k ≥ 1 define

τ
(t)
k := inf

{
n > τ

(t)
k−1 : T ∗n = t, Z(t)(X∗

n) ≤ z(t)
}

. (20)

We assume that ρt := Pr
(
T ∗1 = t, Z(t)(X∗

1 ) ≤ z(t)
)

> 0 so that all these random times τ
(t)
k are

finite.

The random time τ
(0)
1 is the first unit assigned to Treatment 0 that is under the threshold

z(0) and thus will receive that treatment. Similarly, τ
(0)
k is the k-th unit assigned to Treatment

0 that satisfies the constraint and thus will receive that treatment. Implicitly, we assume that

there is no further noncompliance issue after a unit satisfies the constraint. Similar explanations

hold for the stopping times τ
(1)
k . The sampling is stopped after n1 units have been assigned to

Treatment 1. Let m be the number of units screened before obtaining the n1 units assigned to

Treatment 1. Let n0 be the number of unit assigned to Treatment 0 during the sampling. Here m

and n0 are random. m follows a Negative Binomial distribution with parameters n1 and ρ1 and

given m, n0 follows a Binomial distribution with parameters m and ρ0. Recall that for t = 0, 1,

ρt := Pr
(
T ∗1 = t, Z(t)(X∗

1 ) ≤ z(t)
)
. Finally, we assume that all the covariates (X∗

i )1≤i≤m tested

during the sampling are kept in order to compute the causal effect for the entire population.

The idea we are about to use is simple. Although the special sampling used to obtain

the two samples induces a dependence between the observations, it actually does not change the
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dependence between the outcome and the covariates of any one unit. Therefore if the conditional

expectation of the outcome given the covariates follows (A5), its parameters can be consistently

learned from the data available and used to estimate the treatment effect for the whole population.

Let β̂
(1)

be the Ordinary Least Square (OLS) estimate of β(1) in the regression of the outcome Y on

(h(1)
1 (X), . . . , h(1)

p1 (X)) obtained from the sample
(
Y

τ
(1)
i

, X
τ
(1)
i

)
1≤i≤n1

. Similarly, define by β̂
(0)

the

OLS estimate of β(0) computed from the sample
(
Y

τ
(0)
i

, X
τ
(0)
i

)
1≤i≤n0

. We introduce the estimator

τ̂4 :=
1
m

m∑

i=1

[
H

(
β̂

(1)
, X∗

i

)
−H

(
β̂

(0)
, X∗

i

)]
. (21)

It turns out that:

Theorem 4 Assume (A1)-(A3) and (A5). Then, E (τ̂4) → τp as n1 → ∞, where τp is the treat-

ment effect over the whole population.

Proof. It suffices to show that E
(

1
m

∑m
i=1 H

(
β̂

(1)
, X∗

i

))
→ E(Y (1)) as n1 →∞. A similar

argument will apply for E
(

1
m

∑m
i=1 H

(
β̂

(0)
, X∗

i

))
and the Theorem will be proved.

It is not hard to see that E
(

Y ∗
τ
(1)
i

|m,X∗
1 , . . . , X∗

m

)
= β(1)′h(1)(X∗

τ
(1)
i

), where h(1)(x) =
(
h

(1)
1 (x), . . . , h(1)

p1 (x)
)′

. Therefore:

E

(
1
m

m∑

i=1

H
(
β̂

(1)
, X∗

i

))
= β(1)′E

(
1
m

m∑

i=1

h(1)(X∗
i )

)
. (22)

The proof will be finished once we prove that for any 1 ≤ j ≤ p1, E
(

1
m

∑m
i=1 h

(1)
j (X∗

i )
)
→

E
(
h

(1)
j (X∗

1 )
)
.

If i is such that Ti = 1, and Z(1)(X∗
i ) ≤ z(1), then:

E
(
h

(1)
j (X∗

i )|m
)

=
1
ρ1

∫

D1

h
(1)
j (x)l1(x)µX(dx),

where µX is the distribution of X, D1 = {x ∈ X : Z(1)(x) ≤ z(1)}, l1(x) = Pr(T ∗ = 1|X∗ = x).

If i is such that Ti = 0, and Z(0)(X∗
i ) ≤ z(0), then:

E
(
h

(1)
j (X∗

i )|m
)

=
1
ρ0

∫

D0

h
(1)
j (x)l0(x)µX(dx),

where D0 = {x ∈ X : Z(0)(x) ≤ z(0)}, l0(x) = 1− l1(x).

And if i is such that
(
Ti = 1, and Z(1)(X∗

i ) > z(1)
)

or
(
Ti = 0, and Z(0)(X∗

i ) > z(0)
)
, then:

E
(
h

(1)
j (X∗

i )|m
)

=
1

1− ρ0 − ρ1

(∫

D̄1

h
(1)
j (x)l1(x)µX(dx) +

∫

D̄0

h
(1)
j (x)l0(x)µX(dx)

)
,
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where Ā represents the complement of A.

From these expressions, we deduce that:

E

(
1
m

m∑

i=1

h
(1)
j (X∗

i )

)
=

1
ρ1
E

(n1

m

)∫

D1

h
(1)
j (x)l1(x)µX(dx)

+
1
ρ0
E

(n0

m

)∫

D0

h
(1)
j (x)l0(x)µX(dx)

1
1− ρ0 − ρ1

(
1−E

(n0

m

)
− E

(n1

m

)) [∫

D̄1

h
(1)
j (x)l1(x)µX(dx)

+
∫

D̄0

h
(1)
j (x)l0(x)µX(dx)

]
.

Given m n0 distributed as a Binomial distribution with parameters m, ρ0, therefore 1
ρ0
E

(
n0
m

)
= 1.

As we saw, m is distributed as a Negative Binomial distribution with parameters n1 and ρ1, therefore
1
ρ1
E

(
n1
m

) → 1 as n1 →∞. And we get:

E

(
1
m

m∑

i=1

h
(1)
j (X∗

i )

)
−→

∫
h

(1)
j (x)µX(dx), as n1 →∞

after some simplifications.

4 Application

4.1 A simulation example

Here we conduct a Monte Carlo experiment to illustrate that Intent-to-Treat and the Local

Average Treatment Effect can be seriously biased as estimates of the treatment effect over the

population. Let X1, X2 be two covariates defined on some population and assume that X1 ∼
N(60, 15) and X2 ∼ N(2, 0.5). We would like to estimate the causal effect of a treatment (Treatment

1) compared to Treatment 0 over that population. We take 2N (with N = 850) units and randomly

evenly split them over the two treatments such that for any unit i, P (Ti = 1) = 1/2. We assume

that there is full compliance with assignment to Treatment 0; that is, Di = Ti if Ti = 0. But

compliance to Treatment 1 is not perfect. More specifically, we have

P (Ci = 1|Ti = 1, X1 = x1, X2 = x2) =
exp{α0 + α1x1 + α2x2}

1 + exp{α0 + α1x1 + α2x2} ,

with (α0, α1, α2) = (5,−.005,−1).

Let Y be the response or outcome variable. We make the exclusion-restriction assumption

and assume that if a unit receives Treatment j, j = 0, 1, we observe Y (i) and

Y (i)|(X1 = x1, X2 = x2) ∼ N (βi,0 + βi,1x1 + βi,2x2 + βi,3x1x2, 1) ,
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where (β0,0, β0,1, β0,2, β0,3) = (−3.8, 0.01, 1, 0.01) and (β1,0, β1,1, β1,2, β1,3) = (5,−0.05,−1, 0). The

parameters are chosen such that E(Y (0)) = 0 and E(Y (1)) = 0 and therefore the treatment has

no effect on the population. As the reader can see, the example is constructed in such a way that

units with relatively large values of (X1, X2) tend not to comply to assignment to Treatment 1

which appears to be “harmful ” for that sub-population. They switch to Treatment 0 which is

more beneficial for them. We compare the ITT estimate and the LATE estimate with τ̂1, τ̂2 and

τ̂3. Let Yi be the response observed on the i-th unit. We compute the ITT and LATE estimates

as:

ITT =
1
N

(
2N∑

i=1

YiTi −
2N∑

i=1

Yi(1− Ti)

)
,

LATE =
ITT

1
N

(∑2N
i=1 DiTi −

∑2N
i=1 Di(1− Ti)

) .

We have simulated this model 250 times to compute the means of the various estimates as

well as their standard errors. Table 1 shows the results.

Table 1: Means and standard errors of the causal effect estimates.

ITT LATE τ̂1 τ̂2 τ̂3

Mean 0.3323 0.6643 0.0402 0.0005 0.0286

Std error 0.0688 0.1379 0.0778 0.0756 0.0565

[0pt] Graph 1: Density estimates for the distribution of the 5 estimators used.

(insert Graph 1 here)

It is clear from this example that Intent-to-Treat and the Local Average Treatment Effect

are not good estimates of the real treatment over the population. When noncompliance can be

fairly well-predicted from the covariates available, as in this example, the estimates proposed in this

paper provide better estimates. In case of LATE, that estimate is correct if we restrict our interest

to the sub-population of compliers. But as discussed in the introduction, such a sub-population

is not well-defined here; thus, the estimate doesn’t tell us anything about the real effect of the

treatment over the whole population.

4.2 Assessing the effect of an influenza vaccine

We reanalyze a randomized experiment conducted by McDonald et al (1992) to assess the

efficacy of influenza vaccination in reducing flu-related morbidity in high-risk populations. The
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study has also been reanalyzed by Hirano et al (2000). The study was designed to circumvent the

ethical problem of denying the vaccine to part of the population while giving it to others as in a

classical randomized experiment. Physicians in a public hospital were randomly assigned either

to the treatment group or to the control group. When a high-risk patient whose physician is in

the treatment group is scheduled for an appointment, a computer-generated letter is sent to the

physician to encourage her to vaccinate the patient. According to the US Public Health Service

Criteria, patients over 65 years of age or with chronic lung disease, asthma, diabetes mellitus,

congestive heart failure or severe renal or hepatic failure are at high-risk of flu.

For a given patient i, we observe Ti, which is 1 if that person’s physician is in the treatment

group and a letter is sent to encourage the physician to vaccinate the patient, or 0 otherwise. The

patient may choose to comply with its assignment Ti in which case Ci = 1 or not, in which case

Ci = 0. We also observe the variable Di which is 1 if the patient actually receives the flu shot

and 0 otherwise. The outcome variable is a binary variable Yi(t, d) which is 1 if the patient i is

subsequently admitted in hospital for flu during the next winter, or 0 otherwise. The age (age)

and various medical condition variables are also observed on the patients before the assignment.

These are copd ∈ {0, 1} for chronic pulmonary disease, 1 is ‘yes’; dm ∈ {0, 1} for diabetes mellitus,

1 is ‘yes’; heartd ∈ {0, 1} for heart disease, 1 is ‘yes’; renal ∈ {0, 1} for severe renal failure, 1 for

‘yes’; liverd ∈ {0, 1} for chronic hepatic failure, 1 is ‘yes’. The gender sex ∈ {0, 1}, 1 for ‘male’

and race ∈ {0, 1}, 1 for ‘Caucasian’, 0 for ‘non-caucasian’ are also given. We ignore these last two

variables in our analysis. See table 2, for a summary of the data.

[0pt] Table 2: Sample means for the variables of interest over the subpopulations defined by Z

and D.

Z D Y age copd dm heartd liverd sex race

0.5145 0.2502 0.0853 65.27 0.2820 0.2786 0.5736 0.0031 0.6683 0.6550

Z=0 0 0.1893 0.0929 65 0.2894 0.2829 0.5644 0.0036 0.6523 0.6487

Z=1 1 0.3077 0.0781 65.5 0.2751 0.2744 0.5822 0.0027 0.6834 0.6610

D=0 0.4750 0 0.0853 64.72 0.2625 0.2765 0.5660 0.0033 0.6793 0.6587

D=1 0.6327 1 0.0852 66.9 0.3408 0.2849 0.5964 0.0028 0.6355 0.6439

Following Hirano et al (2000), we ignore the clustering of the units through the physicians.

We do this to keep the analysis simple and also because we do not have sufficient information on the

clustering. Therefore we can consider the assignment to the flu shot as completely randomized so

that (A2) holds. In contrast to Hirano et al (2000), we make the exclusion-restriction assumption

(Assumption (A1)) that there is no difference in the distribution of the outcome between the
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patients who had a different assignments but received the same treatment. Given that the study

involves mainly seniors most of them with high risk to influenza, it seems likely that there are all

well aware of the threat posed by the flu season and the basic ways to protect themselves. Therefore

it is very unlikely that a discussion with their physician will make a systematic difference.2

Finally we assume (A3’) and (A4) and use the method developed in Section 3.1. It is very

plausible and we shall assume that if all the patients were given the flu shot, those who choose

voluntarily to take the shot would probably have a higher hospitalization rate:

Cov
(
1{D=1}, Y (1)

) ≥ 0. (23)

Similarly, if all the patients were denied the shot, those who choose not to take the shot would

probably have a lower hospitalization rate:

Cov
(
1{D=0}, Y (0)

) ≤ 0. (24)

In relation with the covariates, another reasonable hypothesis is that for any covariate vector

X ∈ {age, copd, dm, heartd, renal, liverd}: E (Y (0)|X) and E (Y (1)|X) are roughly nondecreasing

in X. For example it seems reasonable to assume that older patient will have higher hospitalization

rate than younger patients. Similarly, patients suffering from any above-mentioned disease is likely

to have a higher hospitalization date than patients not suffering from that disease.

If we agree with the prior information on the study, then we could use this information

to screen the observed covariates to determine which ones agree and are therefore likely to reduce

the noncompliance bias. Table 2 shows Pr(D = 1|X) varies with X for the different covariates.

When X = age, we estimate the Pr(D = 1|X) using a logistic regression and report the correlation

between P̂r(D = 1|X) and X. When X is any one of the other binary variable we report the sample

estimate of Pr(D = 1|X = 1)− Pr(D = 1|X = 0).

From this table, and given the method outlined in Section 3.1.1, we are lead to adjust for

the covariates age, copd, dm, heartd, renal.

Table 3: Estimate of the monotonicity between Pr(D = 1|X) and X

when X is the different covariates observed.

age copd dm heartd liverd

0.9969 0.0726 0.0079 0.023 -0.0281

2Hirano et al (2000) seems to suggest otherwise.
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Based on these assumptions and the final set of selected covariates, we use the estimator τ̂2,

to estimate the causal effect of the treatment over the population and also over different subset of

high risk patients. The results are summarized in Table 3. We compute the treatment effect for the

entire population and for different high risk sub-populations. The standard errors are estimated

by bootstrapping. From these results, we conclude that there is no evidence that the vaccination

has any particular effect on the hospitalization rate in general. But for individuals at high risk,

our analysis strongly suggests that the vaccination has improved the hospitalization rate for those

high risk groups even though the effects are not statistically significant.

Table 4: Overall treatment effect and treatment effect for some high risk groups

overall age> 65 copd dm heartd

Mean -0.0178 -0.0060 -0.1222 -0.0751 -0.0962

s.d. 0.1822 0.1882 0.2862 0.2795 0.2037

4.3 Effect of the Progresa program

In this example we analyse the impact of the Mexican Progresa poverty program on school

attendance for childreen between 13 and 15 years of age. For a detailed description of Progresa,

we refer the reader to Schultz (2004). Progresa was a vast mutli-year program implemented by the

Mexican government to reduce poverty. It has been designed as a randomized experiment. The

government has first identify all the localities where poverty was of concern. 495 localities where

found. A census was conducted in October 1997 to collect information on income, consumption,

assets etc... on all the households in these localities. The census was then used to determine a

poverty index where households under some threshold are assumed very poor and untitled to receive

the Progresa program. At its beginning, the program was not made available in all the localities.

Out of the 495 poor localities, 314 have been assigned to receive the Program, at least in the first

year of the program, while the other serve as control group. The Progresa program itself is made up

of three components. An educational grant to facilitate and encourage the education of childreen.

An improved health services provided to all the members of the household. A monetary transfer is

provided to selected households to help them to satisfy their basic needs.

We estimate the effect of the program on the shool attendance of childreen between 13

and 15 years old, 1 year after the beginning of Progresa. The covariates used in our analysis

are based on the 1997 preliminary survey. The experiment offers a direct estimate of the effect

of the program on childreen in elligible localities. It is certainly also of interest to estimate the

effect of the program on childreen in “rich” households. Following the approach outlined above,
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we used a logistic regression model to estimate the effect of the program on the group of “poor”

childreen, on “rich” childreen and for the while population. The resuts are presented in Table 5. It

appears according to these estimates that the effect of the program for “rich” households would be

comparable although slightly less important than what has been observed for “poor” households.

Table 5: Estimate of Progresa impact on Mexican population. The estimates for “Rich” and

“Overall” are the effect, as given by our model, that we would have observed if Progresa was

extended to this group.

Poor Rich Overall

Mean 0.2907 0.2627 0.2812

s.d. 0.0121 0.0139 0.0122

5 Conclusion

In the paper we have considered randomized experiments where some of the classical as-

sumptions do not hold. Firstly, we have considered randomized experiments with noncompliance

when the noncompliance is not ignorable. We Instead using all available covariates, a solution

that may perform badly, we have proposed a covariate selection method that select the best subset

of covariates to adjust on in order to minimize the estimation bias. Our method requires that

some prior information on the experiment be available. In the second part of the paper, we have

considered experiments where an elligility criteria based on some observed covariate is required to

enter the different arms of the experiment. Despite the fact that only a subset of the population

can enter the experiment, we have shown that a nonparametric model can be used to estimate the

regression function of the treatments’ effect on the covariates. We have used this model to estimate

the causal effect of the treatment over the whole population.
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