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Elite colleges and universities in the United States have recently faced a number of
legal challenges that restrict their use of explicitly race-contingent admissions policies.
Since these institutions continue to seek broad representation from different social groups
(and to view campus diversity as an essential ingredient in the provision of a first-rate
education), they have strong incentives to adjust their admissions criteria in order to
attain diversity goals through less direct means. There is considerable evidence that
this process is well underway, and a literature dealing with the efficiency implications
of color-blind affirmative action policies has emerged (Chan and Eyster 2003, Fryer and
Loury 2007, Fryer et al. 2008, Epple et al. 2008).

This note is concerned with one possible feature of a color-blind policy: the use of
admissions criteria that, while uniform across all social groups, are non-monotone in
measures of past performance (such as high school grades or standardized test scores).
Under such polices individuals with lower scores may receive admission with greater
likelihood than those in the same social group with somewhat higher scores, simply
because their scores fall into a range which is disproportionately populated by members
of an underrepresented group. The possibility that optimal color-blind policies might
have this structure was recognized by Chan and Eyster (2003), although they assumed
for the purposes of their analysis that only monotone rules were feasible. More recently,
Epple et al. (2008) have computed color-blind admissions policies using a calibrated
general equilibrium model, and found them to be non-monotonic in scores (conditional
on other nonracial characteristics such as income).

We establish here that under weak conditions that apply generically, non-monotonicity is
not simply a theoretical possibility or the predicted outcome under a plausible calibration,
but a necessary property of score-maximizing color-blind admissions policies. In addition,
we argue that blind rules can generate significantly greater disparities in mean scores
across groups conditional on acceptance than would arise if explicitly race-contingent
policies were permitted. This is most easily seen in the case of score-maximizing (and
hence non-monotone) policies, but applies also to blind policies that are constrained to
be monotone. We also briefly discuss the manner in which non-monotone policies can
be implemented in practice, given some natural incentive compatibility issues that arise
from their use.
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Consider a population of measure 1 composed of two groups (black and white) with
population shares β and 1 − β respectively. The within-group test score distribution
functions are Fb(θ) and Fw(θ) respectively, and are assumed to possess corresponding
continuous densities fb(θ) and fw(θ). The aggregate distribution function is

F (θ) = βFb(θ) + (1− β)Fw(θ),

with corresponding density

f(θ) = βfb(θ) + (1− β)fw(θ).

We assume that whites score higher as a group relative to blacks in the sense of first
order stochastic dominance:

(1) Fb(θ) ≥ Fw(θ)

for all θ, with strict inequality whenever Fb(θ) > 0 and Fw(θ) < 1.

Only a proportion α of the total population can receive admission. Define θ∗ as the
test score cutoff if admission is based on scores alone, with the highest scorers admitted.
Then

1− F (θ∗) = α.

Let β∗ denote the share of the admitted population that is from the disadvantaged group
under this policy. Then

αβ∗ = β(1− Fb(θ∗)).
It follows from (1) that β∗ < β (members of the disadvantaged group are underrepre-
sented in the population of admitted students). Among those accepted, the mean score
for students belonging to group i ∈ {b, w} is

mi =
1

1− Fi(θ∗)

∫ ∞
θ∗

θfi(θ)dθ,

and the mean score among all accepted students is βmb + (1− β)mw.

Now suppose that a target level of representation β̃ > β∗ is desired, and the institution
wishes to maximize the average score among admitted students subject to the constraint
that this target, as well as the capacity constraint, are both met. If race-contingent
policies are permissible, this may be accomplished by selecting a distinct score threshold
for each group and admitting all those whose scores exceed the threshold corresponding
to group to which they belong. Let θb and θw denote these thresholds. Then the diversity
constraint is

β(1− Fb(θb)) = β̃α,

and the capacity constraint is

1− βFb(θb)− (1− β)Fw(θw) = α.

There is a unique value of θb consistent with the diversity constraint and, given this,
a unique value of θw consistent with the capacity constraint. It is clear that for any
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target β̃ > β∗, we must have θw > θ∗ > θb; the advantaged group will face a more
demanding threshold for admission. The mean score for accepted students belonging to
group i ∈ {b, w} with this (sighted) affirmative action policy is

ms
i =

1
1− Fi(θi)

∫ ∞
θi

θfi(θ)dθ,

and the mean for the entire population of admitted students is βms
b + (1− β)ms

w.

If colleges are prevented from making explicit use of group identity, they must apply the
same set of admissions criteria to members of both groups. This makes it costlier (in
terms of the mean score among accepted students) but not impossible to meet a diversity
target. Following Fryer and Loury (2007), we refer to an admissions policy as color-blind
if a student’s likelihood of acceptance under that policy depends only on his score and
not on his identity, and sighted if it is explicitly race-contingent. Any color-blind policy
can be represented by a function p(θ), interpreted as the probability of acceptance for
someone having score θ. We say that a color blind admissions policy is monotone if p(θ)
is nondecreasing in θ.

The policy of simply admitting the highest scorers may then be written as

p(θ) =
{

1 if θ ≥ θ∗
0 otherwise

This is clearly a monotone policy, which results in the default black population share
β∗ among admitted students. Any target β̃ ∈ [β∗, β] can be met using a policy that is
color blind and monotone, for instance by the appropriate choice of two thresholds such
that those above the higher threshold are admitted with certainty, those below the lower
one rejected, and those between thresholds admitted with a suitably chosen probability.
Chan and Eyster show that such a ‘two-step’ policy can be used to maximize mean
entering scores within the class of rules that are both blind and monotone.

A policy is deterministic if p(θ) ∈ {0, 1} for (almost) all θ in the support of test scores.
The score-maximizing policy with no affirmative action is a deterministic policy. A
little thought shows that a policy that needs to meet a target β̃ > β∗ cannot be both
deterministic and monotone.

Say that p(θ) is a score-maximizing color-blind policy (with target β̃) if it is a solution
to the following problem (with limits of integration omitted):

(2) max
p(θ)

∫
θp(θ)f(θ)dθ

subject to

(3)
∫
p(θ)f(θ)dθ = α,
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and

(4) β

∫
p(θ)fb(θ)dθ ≥ β̃α.

We impose the following condition on the distributions of test scores:

[G] For any θ such that fb(θ) > 0, fb(θ)/f(θ) is not locally affine in θ.2

This condition is extremely mild and simply rules out degenerate cases in which the ratio
of black and white score densities moves over some interval in a way that is precisely
linear in the score.

Proposition 1. Under Condition [G], if p(θ) is a score-maximizing color-blind policy
with target β̃ > β∗, then it is deterministic.

In particular, such a policy cannot be monotone.

Proof. Consider the problem described in (2)–(4). Standard arguments for infinite-
dimensional convex programming (see, e.g. Rockafellar (1974), especially Example 1,
pp. 7 and 18, as well as Example 1′, p. 23) allow us to assert the existence of multipli-
ers λ and µ for the constraints (3) and (4), such that a score-maximizing policy must
maximize

(5)
∫
p(θ) [θf(θ) + λf(θ) + µβfb(θ)] dθ,

subject to the constraint that for every θ, p(θ) ∈ [0, 1].

The expression (5) tells us that the maximizing policy must be deterministic provided

θf(θ) + λf(θ) + µβfb(θ) 6= 0

for almost every θ in the support of test scores. Because f(θ) > 0 a.e. on the support of
test scores, this condition is equivalent to

(θ + λ) + µβ
fb(θ)
f(θ)

6= 0

for almost every θ such that f(θ) > 0. But this follows right away from the continuity
of fb and f , and the genericity condition [G].

In particular, then, p cannot be monotone. For if it were monotone and deterministic, it
is easy to check that either condition (3) or (4) must be violated whenever β̃ > β∗.

2More precisely, there is no interval around θ such that for all θ′ in that interval, [fb(θ)/f(θ)] = A+Bθ

for constants A and B.
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Figure 1. A Score-Maximizing Color-Blind Policy

The following numerical example illustrates the structure of a score-maximizing admis-
sions policy. Suppose that both fb(θ) and fw(θ) are normal with variance 1/2 and means
µb and µw respectively. Then for i ∈ {b, w},

fi(θ) =
1√
π
e−(θ−µi)

2

and

Fi(θ) =
1
2

(1 + erf(θ − µi)).

Suppose that

α =
1
4
, β =

2
5
, β̃ =

1
5
, µb = 0, µw =

8
5
.

Then the score-maximizing blind affirmative action policy is

p(θ) =
{

1 if θ ∈ (θ1, θ2) ∪ [θ3,∞)
0 otherwise

.

where (θ1, θ2) = (0.07, 0.30) and θ3 = 1.94. This policy is illustrated in Figure 1.

It is instructive to examine in detail the admission requirements and mean scores by
group for admitted students under four policy alternatives: no affirmative action, the
sighted policy, the blind score-maximizing policy, and the two-step blind and monotone
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policy. The following table summarizes admissions criteria and mean scores under each
of these.

AA Policy Admission requirement β̃ m mb mw

None θ > 1.76 0.01 2.26 1.99 2.27
Sighted θb > 0.81, θw > 1.90 0.20 2.13 1.16 2.37
Blind score-maximizing θ ∈ (0.07, 0.30) ∪ (1.94,∞) 0.20 1.87 0.23 2.28
Blind monotone θ > 2.13, θ ∈ (−0.92, 2.13) with prob 0.14 0.20 1.75 0.15 2.15

The mean score among all admitted students is highest when no affirmative action policy
is implemented, but the level of diversity falls well below the desired threshold. Sighted
affirmative action allows the diversity target to be met at some cost in terms of the
overall mean score among admitted students. Relative to the case of no affirmative
action, admitted white students have higher mean scores, and admitted black students
have lower mean scores. This is a necessary consequence of the policy and does not
depend on the particular specification used here.

The blind score-maximizing policy results in a much greater disparity in mean scores
across the two groups when compared with the sighted policy. The reasons for this are
apparent from Figure 1: the diversity constraint is met by recruiting students from a
part of the overall score distribution that is heavily populated by the underrepresented
group, but which falls some distance to the left of the cutoff point for remaining students.
A wide gap between mean entering scores across social groups also arises in the case of
blind policies that are constrained to be monotone. The reasons are similar: in the
case of monotone policies the diversity constraint is met be accepting students with low
probability across a very broad range of the score distribution. In addition, the monotone
policy has lower scores not only overall but also within each group when compared with
the score-maximizing admission rule.

How might non-monotone policies be implemented in practice? One possibility is to focus
recruitment efforts on two disjoint applicant pools: those from elite high schools with
high levels of past performance on standardized tests, and those from largely segregated
schools with lower levels of past performance which allow diversity goals to be met in a
manner that is not formally contingent on applicant identity. The former pool helps raise
the value of the objective function, while the latter pool allows the diversity constraint
to be met at relatively little cost in terms of overall mean scores. As long as movement
of students across such disjoint pools is limited, such polices need not violate incentive
compatability constraints. Note, however, that admissions policies must be monotone
conditional on social location if they are to be incentive compatible (Loury, personal
communication). Taking explicit account of recruitment efforts with multiple applicant
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pools and limited mobility is beyond the scope of this note but would seem to be a
worthwhile exercise.

A non-monotone policy has the property that within each group some students with
lower scores are admitted while others with higher scores are denied. As noted by Chan
and Eyster, this violates certain intuitive notions of fairness. Furthermore, blind poli-
cies (both monotone and score-maximizing) can widen the disparity between black and
white scores conditional on admission, resulting in the reinforcement and entrenchment
of negative stereotypes. As Epple et al. (2008, p. 476) note, a common justification for
affirmative action is that “racial diversity in student bodies promotes cross-racial under-
standing and breaks down stereotypes, which better prepares students for an increasingly
diverse workplace.” This particular goal is undermined by the use of color-blind policies
to the extent that they induce larger gaps between groups in mean scores conditional on
acceptance than would arise under the more traditional forms of affirmative action.
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