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Abstract

We study the dynamics of the distribution of wealth in an overlapping gen-
eration economy with �nitely lived agents and inter-generational transmission of
wealth. Financial markets are incomplete, exposing agents to both labor and cap-
ital income risk. We show that the stationary wealth distribution is a Pareto
distribution in the right tail and that it is capital income risk, rather than labor
income, that drives the properties of the right tail of the wealth distribution. We
also study analytically the dependence of the distribution of wealth, of wealth
inequality in particular, on various �scal policy instruments like capital income
taxes and estate taxes, and on di¤erent degrees of social mobility. We show that
capital income and estate taxes can signi�cantly reduce wealth inequality, as do
institutions favoring social mobility. Finally, we calibrate the economy to match
the Lorenz curve of the wealth distribution of the U.S. economy.
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1 Introduction

Rather invariably across a large cross-section of countries and time periods income and
wealth distributions are skewed to the right1 and display heavy upper tails,2 that is,
slowly declining top wealth shares. The top 1% of the richest households in the U.S.
hold over 33% of wealth3 and the top end of the wealth distribution obeys a Pareto law,
the standard statistical model for heavy upper tails.4

Which characteristics of the wealth accumulation process are responsible for these
stylized facts? To answer this question, we study the relationship between wealth inequal-
ity and the structural parameters in an economy in which households choose optimally
their life cycle consumption and saving paths. We aim at understanding �rst of all heavy
upper tails, as they represent one of the main empirical features of wealth inequality.5

Stochastic labor endowments can in principle generate some skewness in the distribu-
tion of wealth, especially if the labor endowment process is itself skewed and persistent. A
large literature studies indeed models in which households face uninsurable idiosyncratic
labor income risk (typically referred to as Bewley models). Yet the standard Bewley
models of Aiyagari (1994) and Huggett (1993) produce low Gini coe¢ cients and cannot
generate heavy tails in wealth. The reason, as discussed in Carroll (1997) and in Quadrini
(1999), is that at higher wealth levels, the incentives for further precautionary savings
tapers o¤ and the tails of wealth distribution remain thin. In order to generate skewness
with heavy tails in wealth distribution, a number of authors have therefore successfully

1Atkinson (2002), Moriguchi-Saez (2005), Piketty (2001), Piketty-Saez (2003), and Saez-Veall (2003)
document skewed distributions of income with relatively large top shares consistently over the last
century, respectively, in the U.K., Japan, France, the U.S., and Canada. Large top wealth shares in the
U.S. since the 60�s are also documented e.g., by Wol¤ (1987, 2004).

2Heavy upper tails (power law behavior) for the distributions of income and wealth are also well
documented, for example by Nirei-Souma (2007) for income in the U.S. and Japan from 1960 to 1999,
by Clementi-Gallegati (2004) for Italy from 1977 to 2002, and by Dagsvik-Vatne (1999) for Norway in
1998.

3See Wol¤ (2004). While income and wealth are correlated and have qualitatively similar distri-
butions, wealth tends to be more concentrated than income. For instance the Gini coe¢ cient of the
distribution of wealth in the U.S. in 1992 is :78, while it is only :57 for the distribution of income (Diaz
Gimenez-Quadrini-Rios Rull, 1997); see also Feenberg-Poterba (2000).

4Using the richest sample of the U.S., the Forbes 400, during 1988-2003 Klass et al. (2007) �nd e.g.,
that the top end of the wealth distribution obeys a Pareto law with an average exponent of 1:49.

5A related question in the mathematics of stochastic processes and in statistical physics asks which
stochastic di¤erence equations produce stationary distributions which are Pareto; see e.g., Sornette
(2000) for a survey. For early applications to the distribution of wealth see e.g., Champernowne (1953),
Rutherford (1955) and Wold-Whittle (1957). For the recent econo-physics literature on the subject,
see e.g., Mantegna-Stanley (2000). The stochastic processes which generate Pareto distributions in
this whole literature are exogenous, that is, they are not the result of agents�optimal consumption-
savings decisions. This is problematic, as e.g., the dependence of the distribution of wealth on �scal
policy in the context of these models would necessarily disregard the e¤ects of policy on the agents�
consumption-saving decisions.
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introduced new features, like for example preferences for bequests, entrepreneurial talent
that generates stochastic returns (Quadrini (1999, 2000), Cagetti and De Nardi, 2006),6

or heterogenous discount rates that follow an exogenous stochastic process (Krusell and
Smith (1998).
Our model is related to these papers. We study an overlapping generation economy

where households are �nitely lived and have a "joy of giving" bequest motive. Further-
more, to capture entrepreneurial risk, we assume households face stochastic stationary
processes for both labor and capital income. In particular, we assume i) (the log of)
labor income has an uninsurable idiosyncratic component and a trend-stationary compo-
nent across generations,7 ii) capital income also is governed by stationary idiosyncratic
shocks, possibly persistent across generations. This speci�cation of labor and capital
income requires justi�cation.
The combination of idiosyncratic and trend-stationary components of labor income

�nds some support in the data; see Guvenen (2007). Most studies of labor income
require some form of stationarity of the income process, though persistent income shocks
are often allowed to explain the cross-sectional distribution of consumption; see e.g.,
Storesletten, Telmer, Yaron (2004).8

The assumption that capital income contains a relevant idiosyncratic component
is not standard in macroeconomics, though Angeletos and Calvet (2006) and Angeletos
(2007) introduce it to study aggregate savings and growth.9 Idiosyncratic capital income
risk appears however to be a signi�cant element of the lifetime income uncertainty of
individuals and households. Two components of capital income are particularly subject
to idiosyncratic risk: ownership of principal residence and private business equity, which
account for, respectively, 28.2% and 27% of household wealth in the U.S., according
to the 2001 Survey of Consumer Finances (Wol¤, 2004 and Bertaut-Starr-McCluer,
2002).10 Case and Shiller (1989) document a large standard deviation, of the order
of 15%, of yearly capital gains or losses on owner-occupied housing. Similarly, Flavin
and Yamashita (2002) measure the standard deviation of the return on housing, at
the level of individual houses, from the 1968-92 waves of the Panel Study of Income
Dynamics, obtaining a similar number, 14%. Returns on private equity have an even

6In Quadrini (2000) the entrepreneurs receive stochastic idiosyncratic returns from projects that
become available through an exogenous Markov process in the "non-corporate" sector, while there is
also a corporate sector that o¤ers non-stochastic returns.

7In fact, trend-stationarity of income is assumed mostly for simplicity. More general stationary
processes can be accounted for.

8While some authors, e.g., Primiceri and van Rens (2006), adopt a non-stationary speci�cation
for individual income, it seems hardly the case that such a speci�cation is suggested by income and
consumption data; see e.g., the discussion of Primiceri and van Rens (2006) by Heathcote (2008). See
also Heathcote, Storesletten, and Violante (2009) for an extensive survey.

9See also Angeletos and Calvet (2005) and Panousi (2008).
10From a di¤erent angle, 67.7% of households own principal residence (16.8% own other real estate)

and 11.9% of household own unincorporated business equity.
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higher idiosyncratic dispersion across household, a consequence of the fact that private
equity is highly concentrated: 75% of all private equity is owned by households for which
it constitutes at least 50% of their total net worth (Moskowitz and Vissing-Jorgensen,
2002). In the 1989 SCF studied by Moskowitz and Vissing-Jorgensen (2002), the median
of the distribution of returns on private equity is 6.9%, while the �rst quartile is 0 and
the third quartile is 18.6%.11 Evidently, the presence of moral hazard and other frictions
render risk diversi�cation, as well as concentrating each household�s wealth in the hands
of the household with the best investment technology, hardly feasible.
Under these assumptions on labor and capital income risk,12 the stationary wealth

distribution is a Pareto distribution in the right tail. The economics of this result is
straightforward. When labor income is stationary, it accumulates additively into wealth.
The multiplicative process of wealth accumulation will then tend to dominate the distri-
bution of wealth in the tail (for high wealth). This is why Bewley models, calibrated to
earning shocks with no capital income shocks, have di¢ culties producing the observed
skewness of the wealth distribution. The heavy tails in the wealth distribution, in our
model, are populated by the dynasties of households which have realized a long streak
of high rates of return on capital income. We analytically show that it is capital income
risk rather than stochastic labor income that drives the properties of the right tail of the
wealth distribution.13

An overview of our analysis is useful to navigate over technical details. If wn+1 is
the initial wealth of an n-th generation household, we show that the dynamics of wealth
follows

wn+1 = �n+1wn + �n+1

where �n+1 and �n+1 are stochastic processes which can be interpreted, respectively, as
the e¤ective rate of return on wealth across generations (the life-cycle return on wealth)
and the permanent income of a generation, after subtracting lifetime consumption. If
�n+1 and �n+1 are i:i:d: processes, under appropriate assumptions

14 this dynamic of
wealth converges to a stationary distribution with a Pareto law

Pr(wn > w) � cw��

11See Angeletos (2007) and Benhabib and Zhu (2008) for more evidence on the macroeconomic rele-
vance of idiosyncratic capital income risk.Quadrini (2000) also extensively documents the role of idio-
syncratic returns and entrepreneurial talent for explaining the heavy tails of wealth distribution.
12Although we emphasize the interpretation with stochastic returns, our model also accomodates a

reduced form interpretation of stochastic discounting, as in Krusell-Smith (1998).
13An alternative approach to generate fat tails without stochastic returns or discounting is to introduce

a "perpetual youth" model with bequests, where the probability death (and or retirement) is independent
of age. In these models, the stochastic component is not stochastic returns or discount rates but the
length of life. For models that embody such features see Wold and Whittle (1957), Castaneda, Gimenez
and Rios-Rull (2003) and Benhabib and Bisin (2006).
14In particular E (�n+1) < 1;Pr (�n+1 > 1) > 0; and �n+1 > 0.
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with an explicit expression for � in terms of the processes for �n+1 and �n+1.
15

nBut �n+1 and �n+1 are endogenously determined by the life-cycle saving and be-
quest behavior of households. Only by studying the life-cycle choices of households we
can characterize the dependence of the distribution of wealth, and of wealth inequal-
ity in particular, on the various structural parameters of the economy, e.g., technology,
preferences, and �scal policy instruments like capital income taxes and estate taxes. We
show that capital income and estate taxes reduce the concentration of wealth in the top
tail of the distribution. Capital and estate taxes have an e¤ect on the top tail of wealth
distribution because they dampen the accumulation choices of households experiencing
lucky streaks of persistent high realizations in the stochastic rates of return. We show
by means of simulations that this e¤ect is potentially very strong.
Furthermore, once �n+1 and �n+1 are obtained from households�saving and bequest

decisions, it becomes apparent that the i:i:d: assumption is very restrictive. Positive auto-
correlations in �n+1 and �n+1 capture variations in social mobility in the economy, e.g.,
economies in which returns on wealth and labor earning abilities are in part transmitted
across generations. Similarly, it is important to allow for the possibility of a correlation
between �n+1 and �n+1, to capture institutional environments where households with
high labor income to have better opportunities for higher returns on wealth in �nancial
markets. By using some new results in the mathematics of stochastic processes (due to
Saporta, 2004 and 2005, and to Roitershtein, 2007) we are able to show that even in this
case the stationary wealth distribution has a Pareto tail, and to compute the e¤ects of
social mobility on the tail analytically.16

Finally, we illustratively calibrate and simulate our model to obtain the full wealth
distribution, rather than just the tail. The model performs quite well in matching the
(Lorenz curve of the) empirical distribution of wealth in the U.S.17

Section 2 introduces the household�s life-cycle consumption and saving decisions.
Section 3 gives the characterization of the stationary wealth distribution with power
tails, and a discussion of the assumptions underlying the result. In Section 4 our results
for the e¤ects of capital income and estate taxes on tail index are stated. Section 4
reports on comparative statics for the bequest motive, the volatility of returns, and the
degree of social mobility as measured by the correlation of rates of return on capital

15See Kesten (1973) and Goldie (1991). Gabaix (1999, Appendix 1) and Nirei-Souma (2007) have
used applications of Kesten processes in economics.
16Champernowne (1953) is the �rst paper exploring the role of stochastic returns on wealth that follow

a Markov chain to generate an asymptotic Pareto distribution of wealth. Recently Levy (2005), in the
same tradition, studies a stochastic multiplicative process for returns and characterizes the resulting
stationary distribution; see also Levy and Solomon (1996) for more formal arguments and Fiaschi-
Marsili (2009). These papers however do not provide the microfoundations necessary for consistent
comparative static exercises. Furthermore, they all assume i:i:d: processes for �n+1 and �n+1 and an
exogenous lower barrier on wealth.
17We also explore the di¤erential e¤ects of capital and estate taxes and of social mobility on the tail

index for top wealth shares and the Gini coe¢ cient for the whole wealth distribution.
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across generations. In Section 5 we do a simple calibration exercise to match the Lorenz
curve and the fat tail of the wealth distribution in the U.S., and to study the e¤ects of
capital income tax and estate tax on wealth inequality. Most proofs and several technical
details are buried in Appendices A-B.

2 Saving and bequests

Consider an economy populated by households who live for T periods. At each time t
households of any age, from 0 to T are alive. We assume the age distribution of the
population is uniform to avoid demographic cycles. Any household born at time s has a
single child entering the economy at time s+T , that is, at his parents�death. Generations
of households are overlapping but are linked to form dynasties. Consider in this section
an household born at time s, say in the n-th generation of his dynasty. It solves a
savings problem which determines its wealth at any time t in its lifetime, leaving its
wealth at death to its child. The household faces idiosyncratic rate of return on wealth
and earnings at birth, which remain however constant in his lifetime. Generation n is
therefore associated to a rate of return on wealth rn18 and to earnings yn at birth, which
grow during the agent lifetime at a deterministic rate g � 0: y(s; t) = y(s; s)eg(t�s);
where y(s; t) denotes the earnings at time t of an agent born at time s (in generation n)
with yn = y(s; s). 19

Let c(s; t) and w(s; t) denote, respectively, consumption and wealth at t of the house-
hold born at s. It inherits wealth w(s; s) at s from its previous generation. If b < 1
denotes the estate tax, w(s; s) = (1� b)w(s�T; s). Each household�s momentary utility
function is denoted u (c (s; t)). Households also have a preference for leaving bequests
to their children. In particular, we assume "joy of giving" preferences for bequests:
the parents�utility from bequests is � (w(s; s)), where � denotes an increasing bequest
function.20

An household of generation n born at time s chooses a lifetime consumption path
c(s; t) to maximize Z s+T

t

e��(v�t)u (c(s; v)) dv + � (w(s+ T; s+ T ))

18Let rn be net of a capital income tax �.
19We can also easily allow for general trend stationary earning processes across generations (with

trend g0 6= g). Zhu (2009) allows for stochastic returns of wealth inside each generation.
20Note that we assume that the argument of the parents�preferences for bequests is after-tax bequests.

We also assume that parents correctly anticipate that bequests are taxed and that this accordingly
reduces their "joy of giving."
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subject to

_w(s; v) = rnw(s; v) + yn � c(s; v)
w(s+ T; s+ T ) = (1� b)w(s; s+ T )

where � > 0 is the discount rate and rn and yn are constant from the point of view of the
household. In the interest of closed form solutions we make the following assumption.

Assumption 1 Preferences satisfy:

u(c) =
c1��

1� � ; � (w) = �
w1��

1� � ;

with elasticity � � 1:21 Furthermore, we require rn � � and � > 0:22

The dynamics of individual wealth is solved for, as a function of age t� s, w (t� s) ;
see Appendix A.

3 The distribution of wealth

In our economy, after-tax bequests from parents are initial wealth of children. We can
construct then a discrete time map for each dynasty�s wealth accumulation process. Let
wn = w(nT; nT ) denote the initial wealth of the n�th dynasty. Since wn is inherited from
generation n� 1,

wn = (1� b)w ((n� 1)T; nT ) = (1� b)w(T ):

The rate of return of wealth and earnings are stochastic across generations. We
assume they are also idiosyncratic across individual. Let (rn)n and (yn)n denote, respec-
tively the stochastic process for the rate of return of wealth and earnings; over generations
n.23 We obtain a di¤erence equation for the initial wealth of dynasties, mapping wn into
wn+1:

wn+1 = �nwn + �n (1)

21u(c) = ln c and � (w) = � lnw for � = 1:
22The condition rn � � (on the whole support of the random variable rn) is su¢ cient to guarantee

that agents will not want borrow during their lifetime. The condition � � 1 guarantees that rn is
larger than the endogenous rate of growth of consumption, rn��� . It is required to produce a stationary
non-degenerate wealth distribution and could be relaxed if we allowed the elasticity of substitution for
consumption and bequest to di¤er, at a notational cost. Finally, � > 0 guarantees positive bequests.
23We avoid as much as possible the notation required for formal de�nitions on probability spaces and

stochastic processes. The costs in terms of precision seems overwhelmed by the gain of simplicity. Given
a random variable xn; for instance, we simply denote the associated stochastic process as (xn)n :
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where (�n; �n)n = (� (rn) ; � (rn; yn))n are stochastic processes induced by (rn; yn)n. They
are obtained as solutions of the households�savings problem and hence they endogenously
depend from the deep parameters of our economy; see Appendix A, equations (4-5), for
closed form solutions of � (rn) and � (rn; yn).
The multiplicative term �n can be interpreted as the e¤ective lifetime rate of return on

initial wealth from one generation to the next, after subtracting the fraction of lifetime
wealth consumed, and before adding e¤ective lifetime earnings, netted for the a¢ ne
component of lifetime consumption.24 We refer to �n as the life-cycle return to wealth.
It can be shown that � (rn) is increasing in rn. The additive component �n can in turn
be interpreted as a measure of e¤ective lifetime (permanent) labor income, again after
subtracting the a¢ ne part of consumption.

3.0.1 The stationary distribution of initial wealth

In this section we study conditions on the stochastic process (rn; yn)n which guarantee
that the initial wealth process de�ned by (1) is ergodic. We then apply a theorem from
Saporta (2004, 2005) to characterize the tail of the stationary distribution of initial
wealth. While the tail of the stationary distribution of initial wealth is easily charac-
terized in the special case in which (rn)n and (yn)n are i:i:d:,25 we study more general
stochastic processes which naturally arise when studying the distribution of wealth. A
positive auto-correlation in rn and yn; in particular, can capture variations in social
mobility in the economy, e.g., economies in which returns on wealth and labor earning
abilities are in part transmitted across generations. Similarly, correlation between rn
and yn, allows e.g., for households with high labor income to have better opportunities
for higher returns on wealth in �nancial markets.26

To induce a limit stationary distribution of (wn)n it is required that the contractive
and expansive components of the e¤ective rate of return tend to balance, i.e., that the
distribution of �n display enough mass on �n < 1 as well some as on �n > 1; and that
e¤ective earnings �n be positive and bounded, hence acting as a re�ecting barrier.
We impose assumptions on (rn; yn)n which are su¢ cient to guarantee the existence of

a limit stationary distribution of (wn)n ; see Assumption 2 and 3 in Appendix B. In terms
of (�n; �n)n these assumptions guarantee that (�n; �n)n > 0; that E (�n j�n�1 )< 1 for
any �n�1, and �nally that �n > 1 with positive probability; see Lemma 3 in Appendix

24A realization of �n = � (rn) < 1 should not, however, be interpreted as a negative return in the
conventional sense. At any instant the rate of return on wealth for an agent is a realization of rn > 0;
that is, positive. Also, note that, because bequests are positive under our assumptions, �n is also
positive; see the Proof of Proposition 3.
25The characterization is an application of the well-known Kesten-Goldie Theorem in this case, as �n

and �n are i.i.d. if rn and yn are.
26See Arrow (1987) and McKay (2008) for models in which such correlations arise endogenously from

non-homogeneous portolio choices in �nancial markets.
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B.27 Under these assumptions we can prove the following theorem, based on a theorem
in Saporta (2005).

Theorem 1 Consider

wn+1 = � (rn)wn + � (rn; yn) ; w0 > 0:

Let (rn; yn)n satisfy Assumption 2 and 3 as well as a regularity assumption.28 Then the
tail of the stationary distribution of wn, Pr(wn > w), is asymptotic to a Pareto law

Pr(wn > w) � cw��;

where � > 1 satis�es

lim
N!1

 
E
N�1Y
n=0

(��n)
�

! 1
N

= 1: (2)

When (�n)n is i:i:d:; condition (2) reduces to E (�)
� = 1; a result established by

Kesten (1973) and Goldie (1991).29

We now turn to the characterization of the stationary wealth distribution of the
economy, aggregating over households of di¤erent ages.

3.1 The stationary wealth distribution

We have shown that the stationary distribution of initial wealth in our economy has
a power tail. The stationary wealth distribution of the economy can be constructed
aggregating over the wealth of households of all ages � from 0 to T (recall we assumed
the age distribution in the population is uniform). The wealth of an household of age
� ; born with wealth w (0), return rn, and income yn; is a deterministic map, as the
realizations of rn and yn are �xed for any household during his lifetime; see Appendix A
for the closed form of w (�).
The power tail of the initial wealth distribution implies that the wealth distribution

of the whole economy displays a tail with exponent � in the following sense:

Theorem 2 Suppose the tail of the stationary distribution of initial wealth wn is asymp-
totic to a Pareto law, Pr(wn > w) � cw��, then the stationary wealth distribution of the
population has a power tail with the same exponent �.
27In Proposition 3 we also show that the state space of (�n; �n)n is well de�ned. Furthermore,

by Assumption 2, (rn)n converges to a stationary distribution and hence (� (rn))n also converges to a
stationary distribution.
28See Appendix B, proof of Theorem 1, for details.

29The term
N�1Y
n=0

��n in 2 arises from using repeated substitions for wn: See Brandt (1986) for general

conditions to obtain an ergodic solution for stationary stochastic processes satisfying (1).
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Note that this result is independent of the demographic characteristics of the econ-
omy, that is, of the stationary distribution of the households by age.

4 Wealth inequality: some comparative statics

We study in this section the tail of the stationary wealth distribution as a function of
preference parameters and �scal policies. In particular, we study stationary wealth
inequality as measured by the tail index of the distribution of wealth, �, which is ana-
lytically characterized in Theorem 1.
The tail index � is inversely related to wealth inequality, as a small index � implies

a heavier top tail of the wealth distribution (the distribution declines more slowly with
wealth in the tail). In fact, the exponent � is inversely linked to the Gini coe¢ cient G:
G = 1

2��1 , the classic statistical measure of inequality:
30

First, we shall study how di¤erent compositions of capital and labor income risk
a¤ect the tail index �. Second, we shall study the e¤ects of preferences, in particular the
intensity of the bequest motive. Third, we shall characterize the e¤ects of both capital
income and estate taxes on �: Finally, we shall address the relationship between social
mobility and �.

4.1 Capital and labor income risk

If follows from Theorem 1 that the stochastic properties of labor income risk, (�n)n ;
have no e¤ect on the tail of the stationary wealth distribution. In fact heavy tails in
the stationary distribution require that the economy has su¢ cient capital income risk,
with �n > 1 with positive probability. Consider instead an economy with limited capital
income risk, in which �n < 1 with probability 1 and �� is the upper bound of �n: In
this case it is straightforward to show that the stationary distribution of wealth would
be bounded above by �

1�� , where � is the upper bound of �n:
31

More generally, we can also show that wealth inequality increases with the capital
income risk households face in the economy.

Proposition 1 Consider two distinct i:i:d: processes for the rate of return on wealth,
(rn)n and (r0n)n. Suppose �(rn) is a convex function of rn.

32 If rn second order stochas-

30See e.g., Chipman (1976). A distribution with a lower � has also a higher Lorenz curve at the top
end of wealth levels; see Zhu (2009) for a proof. Since the distribution of wealth in our economy is
typically Pareto only in the tail, we refer to G = 1

2��1 as to the "Gini of the tail."
31Of course this is true a fortiori in the case where there is no capital risk and �n = � < 1:
32This is typically the case in our economy if constant relative risk aversion parameter � is not too

high. A su¢ cient condition is 2
�p
2� 1

�
T
R T
0
teA(rn)tdt � ��1

�

R T
0
t2eA(rn)tdt > 0;which holds, e.g., if

� <
�
1� 2

�p
2� 1

���1
= 4:828 4.
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tically dominates r0n, the tail index � of the wealth distribution under (rn)n is smaller
than under (r0n)n.

We conclude that it is capital income risk (idiosyncratic risk on return on capital),
and not labor income risk, that determines the heaviness of the tail of the stationary
distribution given by the tail index: the higher capital income risk, the more unequal is
wealth.

4.2 The bequest motive

Wealth inequality depends on the bequest motive, as measured by the preference para-
meter �.

Proposition 2 The tail index � decreases with the bequest motive �:

A household with a higher preference for bequests will save more and accumulate
wealth faster. This saving behavior induces an higher e¤ective rate of return of wealth
across generations �n, on average, which in turn leads to higher wealth inequality.

4.3 Fiscal policy

Fiscal policies in our economy are captured by the parameters b and �; representing,
respectively, the estate tax and the capital income tax.33

Proposition 3 The tail index � increases with the estate tax b and with the capital
income tax �.

Furthermore, let �(rn) denote a non-linear tax on capital, such that the net rate of
return of wealth for generation n becomes rn (1� �(rn)) : Since @�n

@rn
> 0; the Corollary

below follows immediately from Proposition 3.

Corollary 1 The tail index � increases with the imposition of a non-linear tax on capital
�(rn).

Taxes have therefore a dampening e¤ect on the tail of the wealth distribution in our
economy: the higher are taxes, the lower is wealth inequality. The calibration exercise
in Section 2 documents that in fact the tail of the stationary wealth distribution is quite
sensitive to variations in both capital income taxes and estate taxes. Becker and Tomes
(1979), on the contrary, �nd that taxes have ambiguous e¤ects on wealth inequality at
the stationary distribution. In their model, bequests are chosen by parents to essentially
o¤set the e¤ects of �scal policy, limiting any wealth equalizing aspects of these policies.

33Recall that the random rate of return rn in our economy is de�ned net of the capital income tax �.
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This compensating e¤ect of bequests is present in our economy as well, though it is not
su¢ cient to o¤set the e¤ects of estate and capital income taxes on the stochastic returns
on capital. In other words, the power of Becker and Tomes (1979)�s compensating e¤ect
is due to the fact that their economy has no capital income risk. The main mechanism
through which estate taxes and capital income taxes have an equalizing e¤ect on the
wealth distribution in our economy is by reducing the capital income risk, along the
lines of Proposition 1, not its average return.

4.4 Social mobility

We turn now to the study of the e¤ects of di¤erent degrees of social mobility on the tail
of the wealth distribution. We say social mobility is higher when (rn)n and (yn)n (and
hence when (�n)n and (�n)n) are less auto-correlated over time.
We provide here expressions for the tail index of the wealth distribution as a function

of the auto-correlation of (�n)n in two distinct cases:
34

MA(1)
ln�n = �n + ��n�1

AR(1)

ln�n = � ln�n�1 + �n

where � < 1 and (�n)n is an i:i:d: process with bounded support.

Proposition 4 Suppose that ln�n satis�es MA(1). The tail of the limiting distribution
of initial wealth wn is then asymptotic to a Pareto law with tail exponent �MA which
satis�es

Ee�MA(1+�)�n = 1:

If instead ln�n satis�es AR(1), the tail exponent �AR satis�es

Ee
�AR
1�� �n = 1:35

In either the MA(1) or the AR(1) case, the higher is �, the lower is the tail exponent.
That is, the more persistent is the process for the rate of return on wealth (the higher
are frictions to social mobility), the thicker is the tail of the wealth distribution.36

34The stochastic properties of (yn)n,and hence of (�n)n ; as we have seen, do not a¤ect the tail index.
35We thank an anonymous referee for an outline of this Proposition.
36The results will easily extend to MA (k) and AR (k) processes for ln�n:
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5 An illustrative calibration exercise

As we have already discussed in the Introduction, it has proven hard for standard macro-
economic models, when calibrated to the U.S. economy, to produce wealth distributions
with tails as heavy as those observed in the data.
The analytical results in the previous sections suggest that capital income risk should

prove very helpful in matching the heavy tails. More generally, however, our results are
limited to a characterization of the tail of the wealth distribution and questions might
remain about the ability of a our model to match the entire wealth distribution. To
this end we report on a illustrative calibration exercise to match the Lorenz curve of the
wealth distribution in the U.S. We shall then study the e¤ects of capital income taxes,
estate taxes, and social mobility on wealth inequality.
Our benchmark calibration postulates a rate of return rn which is i:i:d: across gen-

erations (perfect social mobility). We set the before-tax rate of return to a discrete
distribution, with mean 1:0921:37 The distribution of labor earnings is also discrete, with
mean 1:675.38 These values are chosen so that the labor income share be about twice
the capital income share: 1:94 in fact at the stationary distribution. We set the life
span to the average working span, T = 45, and we set � = 2, � = 0:04, g = :01; and
� = 0:25. We also set the estate tax rate b = 0:20 (which is the average tax rate on
bequests), and the capital income tax � = 0:15. Finally, we introduce the possibility of
frictions to social mobility: starting from our benchmark i:i:d case for rn; expressed as
a Markov transition matrix with identical rows, we move a mass " of probability from
the o¤-diagonal terms in each row to the diagonal term of that row in order to introduce
persistence across generations.
With this calibration we simulate the stationary distribution of the economy. We then

calculate the top percentiles of the simulated wealth distribution, the Gini coe¢ cient of
the whole distribution (not just the "Gini of the tail"), the quintiles, and the tail index
�. We compare these statistics of the simulated distribution with those of the U.S.
economy.39

First of all, note that the simulated wealth distribution matches successfully the top
percentiles of the U.S. economy.

37The values of rn are 1:08, 1:12, 1:15, and 1:32 with probability 0:8, 0:12, 0:07, and 0:01 respectively.
38The values of yn are 0:3, 1, 2, 5, 10, and 30 with probability 14

64 ,
36
64 ,

11
64 ,

1
64 ,

1
64 , and

1
64 respectively.

39For the data of U.S. economy, the tail index is from Klass et al. (2007) who use the Forbes 400
data. The rest of data for the U.S. economy are from Diaz-Gimenez et al. (2002) who use the 1998
Survey of Consumer Finances (SCF).
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Percentiles
Economy 90th� 95th 95th� 99th 99th� 100th
U:S: 0:113 0:231 0:347

Model with " = 0 0:099 0:207 0:385
" = 0:001 0:093 0:212 0:418
" = 0:004 0:088 0:230 0:461

Table 5.1: Percentiles of the top tail

More surprisingly, perhaps, the simulated wealth distribution has a Gini coe¢ cient
close to that of the U.S. economy and its Lorenz curve matches that of the U.S. economy
rather well in terms of quintiles.40

Quintiles
Economy Tail index � Gini F irst Second Third Fourth F ifth
U:S: 1:49 0:803 �0:003 0:013 0:05 0:122 0:817

Model with " = 0 1:795 0:740 0:022 0:040 0:057 0:091 0:789
" = 0:001 1:693 0:767 0:020 0:035 0:050 0:082 0:813
" = 0:004 1:489 0:814 0:015 0:027 0:038 0:064 0:856

Table 5.2: Tail Index, Gini, and Quintiles

Note in particular that, by reducing social mobility (increasing "), we can rather easily
generate economies with even a thicker tail than the U.S. economy (at the benchmark
parameters values). The literature on the distribution of wealth has on the contrary
struggled to �nd signi�cant e¤ects of social mobility frictions and other intergenerational
links; see e.g., the discussion in De Nardi (2004) on the issue. This inconsistency is in fact
only apparent, once it is realized that the intergenerational links studied in the previous
literature operate on labour earnings rather than on the rate of return on wealth as in
our model.

5.1 Tax experiments

The Tables below illustrate the e¤ects of taxes on the tail index and the Gini coe¢ cient.
We calibrate the parameters of the economy other than b and �, at the benchmark, and
we vary tax rates b and �. Table 5.3 reports on the e¤ects of capital income taxes and

40The tail index � reported in Table 5.2 is computed analytically using the results of Saporta (2005,
Proposition 1, section 4.1) discussed in the proof of Theorem (1) in Appendix B.
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estate taxes on the tail index �:

bn� 0 0:05 0:1 0:15
0 1:155 1:301 1:483 1:718
0:1 1:174 1:323 1:510 1:753
0:2 1:195 1:348 1:542 1:795
0:3 1:219 1:378 1:579 1:844

Table 5.3: Tax experiments - Tail index �

Taxes have a signi�cant e¤ect on the inequality of the wealth distribution as measured
by the tail index. This is especially the case for the capital income tax, which directly
a¤ects the stochastic returns on wealth. The implied "Gini of the tail" changes from
:763 with no taxes to :372 with a 30% estate tax and a 15% capital income tax.
We now turn to the Gini coe¢ cient of the whole distribution. The results are in

Table 5.4.

bn� 0 0:05 0:1 0:15
0 :838 :790 :772 :734
0:1 :842 :787 :760 :741
0:2 :821 :785 :757 :740
0:3 :832 :783 :761 :735

Table 5.4: Tax experiments - Gini Coe¢ cient

We see that the Gini coe¢ cient consistently declines as the capital income tax in-
creases, but the decline is quite moderate, and the estate taxes can even have ambiguous
e¤ects.41 The mechanism which might induce such counterintuitive e¤ects of a tax in-
crease is intuitively understood as follows. A tax increase has the e¤ect of substantially
reducing the concentration of wealth in the tail of the distribution (this is clear from
Table 5.3). This e¤ect is however partly compensated for by greater inequality at lower
wealth levels. The decrease in the rate of return on wealth due to the increase in tax
rates has in fact a positive wealth e¤ect, as it increases the permanent labor income of
households (future labor earnings are discounted at a lower rate). This wealth e¤ect is
relatively larger for households whose physical wealth is relatively low. These households
will smooth their consumption based on their lifetime labor earnings, and will hence react
to a tax increase by decumulating physical wealth proportionately faster than households

41In our calibration exercise G appears more sensitive to capital income taxes than estate taxes.
Nonetheless, an increase of the estate tax rate from 10 to 20 percent decreases the Gini index between
20 and 30 percent, depending on the level of the capital income tax. The e¤ect is larger the larger is
the capital income tax rate.
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that are relatively rich in physical wealth. As a result of this e¤ect, wealth inequality
between rich and poor households as measured by physical wealth tends to increase.
This result has to interpreted with caution, however. The counterintuitive e¤ects of a

tax increase on wealth inequality in Table 5.4 would be moderated (perhaps eliminated)
if tax revenues were to be redistributed in the economy. Nonetheless Table 5.4 suggests
that it might be worth re-evaluating the e¤ects on wealth inequality of various proposed
�scal policies available in the literature. For instance, Castaneda, Diaz Jimenez, and Rios
Rull (2003) and Cagetti and De Nardi (2007) �nd very small (or even perverse) e¤ects
of eliminating bequest taxes in their calibrations in models with a skewed distribution
of earnings but no capital income risk.42 If the capital income risk component is a
substantial fraction of idiosyncratic risk, such �scal policies could have a sizeable e¤ects
in increasing the wealth concentrated in the top tail of the distribution which may not
show up in measurements of the Gini coe¢ cient.43

6 Conclusion

The main conclusion of this paper is that capital income risk, that is, idiosyncratic
returns on wealth, has a fundamental role in a¤ecting the distribution of wealth. Capital
income risk appears crucial in generating the heavy tails observed in wealth distributions
across a large cross-section of countries and time periods. Furthermore, when the wealth
distribution is shaped by capital income risk, the top tail of wealth distribution is very
sensitive to �scal policies, a result which is often documented empirically but hard to
generate in many classes of models without capital income risk. Higher taxes in e¤ect
dampen the multiplicative stochastic return on wealth, which is critical to generate the
heavy tails.
Interestingly, this role of capital income risk as a determinant of the distribution

of wealth seems to have been lost by Vilfredo Pareto. He explicitly noted that an
identical stochastic process for wealth across households will not induce the skewed
wealth distribution that we observe in the data (See Pareto (1897), Note 1 to #962,
p. 315-316). He therefore introduced skewness into the distribution of talents or labor
earnings of households (1897, Notes to #962, p. 416). Left with the distribution of
talents and earnings as the main determinant of the wealth distribution, he was perhaps

42See also our discussion of the results of Becker and Tomes (1979), previously in this section.
43Empirical studies also indicate that higher and more progressive taxes did in fact signi�cantly reduce

income and wealth inequality in the historical context; notably, e.g., Lampman (1962) and Kuznets
(1955). Most recently, Piketty (2001) and Piketty and Saez (2003) have argued that redistributive
capital and estate taxation may have prevented holders of very large fortunes from recovering from the
shocks that they experienced during the Great Depression and World War II because of the dynamic
e¤ects of progressive taxation on capital accumulation and pre-tax income inequality. This line of
argument has been extended to the U.S., Japan, and Canada, respectively, by Moriguchi-Saez (2005),
Saez-Veall (2003).
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lead to his "Pareto�s Law," enunciated e.g., by Samuelson (1965) as follows:

In all places and all times, the distribution of income remains the same. Nei-
ther institutional change nor egalitarian taxation can alter this fundamental
constant of social sciences.44

44See Chipman (1976) for a discussion on the controversy between Pareto and Pigou regarding the
interpretation of the Law. To be fair to Pareto, he also had a "political economy" theory of �scal policy
(determined by the controlling elites) which could also explain the "Pareto Law;" see Pareto (1901,
1909).

17



References

Aiyagari, S.R. (1994): "Uninsured Idiosyncratic Risk and Aggregate Savings," Quar-
terly Journal of Economics,109 (3), 659-684.

Angeletos, G. (2007), "Uninsured Idiosyncratic Investment Risk and Aggregate Saving",
Review of Economic Dynamics, 10, 1-30.

Angeletos, G. and L.E. Calvet (2005), "Incomplete-market dynamics in a neoclassical
production economy," Journal of Mathematical Economics, 41(4-5), 407-438.

Angeletos, G. and L.E. Calvet (2006), "Idiosyncratic Production Risk, Growth and the
Business Cycle", Journal of Monetary Economics, 53, 1095-1115.

Arrow, K. (1987): "The Demand for Information and the Distribution of Income,"
Probability in the Engineering and Informational Sciences, 1, 3-13.

Atkinson, A.B. (2002): "Top Incomes in the United Kingdom over the Twentieth Cen-
tury," mimeo, Nu¢ eld College, Oxford.

Becker, G.S. and N. Tomes (1979): "An Equilibrium Theory of the Distribution of
Income and Intergenerational Mobility," Journal of Political Economy, 87, 6, 1153-
1189.

Benhabib, J. and A. Bisin (2006), "The Distribution of Wealth and Redistributive
Policies", Manuscript, New York University.

Benhabib, J. and S. Zhu (2008): "Age, Luck and Inheritance," NBER Working Paper
No. 14128.

Bertaut, C. and M. Starr-McCluer (2002): "Household Portfolios in the United States",
in L. Guiso, M. Haliassos, and T. Jappelli, Editor, Household Portfolios, MIT Press,
Cambridge, MA.

Brandt, A. (1986): "The Stochastic Equation Yn+1 = AnYn + Bn with Stationary
Coe¢ cients," Advances in Applied Probability, 18, 211�220.

Burris, V. (2000): "The Myth of Old Money Liberalism: The Politics of the "Forbes"
400 Richest Americans", Social Problems, 47, 360-378.

Cagetti, C. and M. De Nardi (2005): "Wealth Inequality: Data and Models," Federal
Reserve Bank of Chicago, W. P. 2005-10.

Cagetti, M. and M. De Nardi (2006), "Entrepreneurship, Frictions, and Wealth", Jour-
nal of Political Economy, 114, 835-870.

18



Cagetti, C. and M. De Nardi (2007): "Estate Taxation, Entrepreneurship, andWealth,"
NBER Working Paper 13160.

Carroll, C. D. (1997). �Bu¤er-Stock Saving and the Life Cycle/Permanent Income
Hypothesis,�Quarterly Journal of Economics, 112, 1�56.

Castaneda, A., J. Diaz-Gimenez, and J. V. Rios-Rull (2003): "Accounting for the U.S.
Earnings and Wealth Inequality," Journal of Political Economy, 111, 4, 818-57.

Champernowne, D.G. (1953): "A Model of Income Distribution," Economic Journal,
63, 318-51.

Chipman, J.S. (1976): "The Paretian Heritage," Revue Europeenne des Sciences So-
ciales et Cahiers Vilfredo Pareto, 14, 37, 65-171.

Clementi, F. and M. Gallegati (2005): "Power Law Tails in the Italian Personal Income
Distribution," Physica A: Statistical Mechanics and Theoretical Physics, 350, 427-
438.

Dagsvik, J.K. and B.H. Vatne (1999): "Is the Distribution of Income Compatible with
a Stable Distribution?," D.P. No. 246, Research Department, Statistics Norway.

De Nardi, M. (2004): "Wealth Inequality and Intergenerational Links," Review of Eco-
nomic Studies, 71, 743-768.

Diaz-Gimenez, J., V. Quadrini, and J. V. Rios-Rull (1997): "Dimensions of Inequality:
Facts on the U.S. Distributions of Earnings, Income, and Wealth," Federal Reserve
Bank of Minneapolis Quarterly Review, 21(2), 3-21.

Díaz-Giménez, J., V. Quadrini, J. V. Ríos-Rull, and S. B. Rodríguez (2002): "Updated
Facts on the U.S. Distributions of Earnings, Income, and Wealth", Federal Reserve
Bank of Minneapolis Quarterly Review, 26(3), 2-35.

Elwood, P., S.M. Miller, M. Bayard, T. Watson, C. Collins, and C. Hartman (1997):
"Born on Third Base: The Sources of Wealth of the 1996 Forbes 400," Boston:
Uni�ed for a Fair Economy.

Feenberg, D. and J. Poterba (2000): "The Income and Tax Share of Very High Income
Household: 1960-1995," American Economic Review, 90, 264-70.

Feller, W. (1966): An Introduction to Probability Theory and its Applications, 2, Wiley,
New York.

Fiaschi, D. and M. Marsili (2009): "Distribution of Wealth and Incomplete Markets:
Theory and Empirical Evidence," University of Pisa Working paper 83.

19



Flavin, M. and T. Yamashita (2002): "Owner-Occupied Housing and the Composition
of the Household Portfolio", American Economic Review, 92, 345-362.

Flodén, M. (2008): "A note on the accuracy of Markov-chain approximations to highly
persistent AR(1) processes" Economics Letters, 99 (3), 2008, 516-520.

Gabaix, X. (1999): "Zipf�s law for cities: An Explanation," Quarterly Journal of Eco-
nomics, 114(3), 739-67.

Goldie, C. M. (1991): "Implicit Renewal Theory and Tails of Solutions of Random
Equations," Annals of Applied Probability, 1, 126�166.

Guvenen, F. (2007): "Learning Your Earning: Are Labor Income Shocks Really Very
Persistent?," American Economic Review, 97(3), 687-712.

Heathcote, J. (2008): "Discussion Heterogeneous Life-Cycle Pro�les, Income Risk, and
Consumption Inequality, by G. Primiceri and T. van Rens," Federal Bank of Min-
neapolis, mimeo.

Huggett, M. (1993): "The Risk-Free Rate in Heterogeneous-household Incomplete-
Insurance Economies, Journal of Economic Dynamics and Control, 17, 953-69.

Huggett, M. (1996):, "Wealth Distribution in Life-Cycle Economies," Journal of Mon-
etary Economics, 38, 469-494.

Kesten, H. (1973): "Random Di¤erence Equations and Renewal Theory for Products
of Random Matrices," Acta Mathematica. 131 207�248.

Klass, O.S., Biham, O., Levy, M., Malcai O., and S. Solomon (2007): "The Forbes 400,
the Pareto Power-law and E¢ cient Markets, The European Physical Journal B -
Condensed Matter and Complex Systems, 55(2), 143-7.

Krusell, P. and A. A. Smith (1998): "Income and Wealth Heterogeneity in the Macro-
economy," Journal of Political Economy, 106, 867-896.

Kuznets, S. (1955): �Economic Growth and Economic Inequality,�American Economic
Review, 45, 1-28.

Lampman, R.J. (1962): The Share of Top Wealth-Holders in National Wealth, 1922-
1956, Princeton, NJ, NBER and Princeton University Press.

Levy, M. (2005), " Market E¢ ciency, The Pareto Wealth Distribution, and the Levy
Distribution of Stock Returns" in The Economy as an Evolving Complex System
eds. S. Durlauf and L. Blume, Oxford University Press, USA.

20



Levy, M. and S. Solomon (1996): "Power Laws are Logarithmic Boltzmann Laws,"
International Journal of Modern Physics, C,7, 65-72.

Loève, M. (1977), Probability Theory, 4th ed., Springer, New York.

McKay, A. (2008): "Household Saving Behavior, Wealth Accumulation and Social Se-
curity Privatization," mimeo, Princeton University.

Moriguchi, C. and E. Saez (2005): "The Evolution of Income Concentration in Japan,
1885-2002: Evidence from Income Tax Statistics," mimeo, University of California,
Berkeley.

Moskowitz, T. and A. Vissing-Jorgensen (2002): "The Returns to Entrepreneurial In-
vestment: A Private Equity Premium Puzzle?", American Economic Review, 92,
745-778.

Nirei, M. and W. Souma (2007): "Two Review of Income and Wealth, 53(3), 440-59.

Pareto, V. (1897): Cours d�Economie Politique, II, F. Rouge, Lausanne.

V. Pareto (1901): "Un�Applicazione di teorie sociologiche", Rivista Italiana di So-
ciologia. 5. 402-456, translated as The Rise and Fall of Elites: An Application
of Theoretical Sociology , Transaction Publishers, New Brunswick, New Jersey,
(1991).

V. Pareto (1909): Manuel d�Economie Politique, V. Girard et E. Brière, Paris.

Piketty, T. (2001): "Income Inequality in France, 1901-1998," Journal of Political Econ-
omy.

Piketty, T. and E. Saez (2003): "Income Inequality in the United States, 1913-1998,"
Quarterly Journal of Economics, CXVIII, 1, 1-39.

Quadrini, V. (1999): "The importance of entrepreneurship for wealth concentration
and mobility," Review of Income and Wealth, 45, 1-19.

Quadrini, V. (2000): "Entrepreneurship, Savings and Social Mobility," Review of Eco-
nomic Dynamics, 3, 1-40.

Panousi, V. (2008): "Capital Taxation with Entrepreneurial Risk," mimeo, MIT.

Primiceri, G. and T. van Rens (2006): "Heterogeneous Life-Cycle Pro�les, Income Risk,
and Consumption Inequality," CEPR Discussion Paper 5881.

Roitershtein, A. (2007): "One-Dimensional Linear Recursions with Markov-Dependent
Coe¢ cients," The Annals of Applied Probability, 17(2), 572-608.

21



Rutherford, R.S.G. (1955): "Income Distribution: A New Model," Econometrica, 23,
277-94.

Saez, E. and M. Veall (2003): "The Evolution of Top Incomes in Canada," NBER
Working Paper 9607.

P.A. Samuelson (1965): �A Fallacy in the Interpretation of the Pareto�s Law of Alleged
Constancy of Income Distribution,�Rivista Internazionale di Scienze Economiche
e Commerciali, 12, 246-50.

Saporta, B. (2004): "Etude de la Solution Stationnaire de l�́ Equation Yn+1 = anYn+bn;
a Coe¢ cients Aleatoires," (Thesis), http://tel.archives-ouvertes.fr/docs/00/04/74/12/PDF/tel-
00007666.pdf

Saporta, B. (2005): "Tail of the stationary solution of the stochastic equation Yn+1 =
anYn+bn withMarkovian coe¢ cients," Stochastic Processes and Application 115(12),
1954-1978.

Sornette, D. (2000): Critical Phenomena in Natural Sciences, Berlin, Springer Verlag.

Storesletten, K., C.I. Telmer, and A. Yaron (2004): "Consumption and Risk Sharing
Over the Life Cycle," Journal of Monetary Economics, 51(3), 609-33.

Tauchen, G. (1986): "Finite State Markov-Chain Approximations to Univariate and
Vector Autoregressions," Economics Letters, 20(2), 177-81.

Tauchen, G. and R. Hussey (1991): "Quadrature-Based Methods for Obtaining Approx-
imate Solutions to Nonlinear Asset Pricing Models," Econometrica, 59(2), 371-96.

Wold, H.O.A. and P. Whittle (1957): "A Model Explaining the Pareto Distribution of
Wealth," Econometrica, 25, 4, 591-5.

Wol¤, E. (1987): "Estimates of Household Wealth Inequality in the U.S., 1962-1983,"
The Review of Income and Wealth, 33, 231-56.

Wol¤, E. (2004): "Changes in HouseholdWealth in the 1980s and 1990s in the U.S.,"mimeo,
NYU.

Zhu, Shenghao (2009): "Comparative Statics of the Stationary Distribution of a Linear
Model," mimeo, NYU.

22



7 Appendix A: Closed form solutions

We report here only the closed form solutions for the dynamics of wealth in the paper.
The details of the computations are available online at http://www.nyu.edu/econ/user/bisina/
and at http://www.econ.nyu.edu/user/benhabib/.
Let an individual�s age be denoted � = t�s: Let human capital of an household born

at s at time t; h(s; t); be de�ned as h (s; t) =
R s+T
t

yne
� (r)�d� : The optimal consumption

path satis�es
c (s; t) = m(�) (w (s; t) + h (s; t)) ;

The propensity to consume out of �nancial and human wealth, m(�); is independent of
w (s; t) and h (s; t), is decreasing in age � ; in the estate tax b; and in capital income tax
�:

m(�) =
1

1
rn� rn��

�

�
1� e�(rn�

rn��
� )(T��)

�
+ �

1
� (1� b) 1��� e�(rn�

rn��
� )(T��)

(3)

Let w (t� s) be the wealth of an household of age t� s born with wealth w (0) : The
dynamics of individual wealth as a function of age � satis�es

w (t� s) = �w(rn; t� s)w (0) + �y(rn; t� s)y(0)
with

�w(rn; �) = ern�
eA(T��) + AB � 1
eAT + AB � 1

�y(rn; �) = ern�
e(g�r)T � 1
g � r

�
eA(T��) + AB � 1
eAT + AB � 1 � e

rn(T��) � 1
ernT � 1

�
The dynamics of wealth across generation is then:

wn+1 = �nwn + �n

with

�(rn) = (1� b)ernT
A(rn)B(b)

eA(rn)T + A(rn)B(b)� 1
(4)

and

�(rn; yn) = (1� b)yn
e(g�rn)T � 1
g � rn

ernT
A(rn)B(b)

eA(rn)T + A(rn)B(b)� 1
(5)

8 Appendix B: Proofs

The stochastic processes for (rn; yn) and the induced processes for (�n; �n)n = (�(rn); �(rn; yn))n
are required to satisfy the following assumptions.

23



Assumption 2 The stochastic process (rn; yn)n is a real, irreducible, aperiodic, station-
ary Markov chain with �nite state space �r� �y := fr1; :::; rmg� fy1; :::; ylg . Furthermore
it satis�es:

Pr (rn; yn j rn�1; yn�1) = Pr (rn; yn j rn�1) ;
where Pr (rn; yn j rn�1; yn�1) denotes the conditional probability of (rn; yn) given (rn�1; yn�1) :45

A stochastic process (rn; yn)n which satis�es Assumption 2 is a Markov Modulated
chain. This assumption would be satis�ed, for instance, if a single Markov chain, cor-
responding e.g., to productivity shocks, drove returns on capital (rn)n ; as well as labor
income (yn)n :

46

Assumption 3 Let P denote the transition matrix of (rn)n: Pii0 = Pr (ri jri0 ). Let �(�r)
denote the state space of (�n)n as induced by the map � (rn) : Then �r, �y and P are such
that: (i) �r� �y >> 0; ii) P�(�r) < 1; (iii) 9ri such that � (ri) > 1, (iv) Pii > 0; for any
i:

We are now ready to show:

Lemma 3 Assumptions 2 on (rn; yn)n imply that (�n; �n)n is a Markov Modulated chain.
Furthermore, Assumption 3 implies that (�n; �n)n is re�ective, that is, it satis�es: (i)
(�n; �n)n is > 0; (ii) E (�n j�n�1 ) < 1; for any �n�1; 47 (iii) �i > 1 for some i = 1; :::m,
(iv) the diagonal elements of the transition matrix P of �n are positive.

Proof of Lemma 3. Let A be the diagonal matrix with elements Aii = �i; and
Aij = 0, j 6= i. Note that E (�n j�n�1 ) ; for any �n�1 can be written as P�(�r) < 1:
Let r= fr1; :::; rmg denote the state space of rn: Similarly, let y= fy1; :::; ylg denote the
state space of yn: Let � = f�1; :::�mg and � =

�
�1; :::�l

	
denote the state spaces of,

respectively, �n and �n; as they are induced through the maps 4 and 5. We shall show
that the maps 4 and 5 are bounded in rn and yn: Therefore the state spaces of �n and
�n are well de�ned. It immediately follows then that, if (rn; yn)n is a Markov Modulated
chain (Assumption 2), so is (�n; �n)n.
We now show that under Assumption 3 (i), (�n; �n)n is > 0 and bounded with

probability 1 in rn and yn: Recall that B(b) = �
1
� (1� b)

1��
� > 0. Note that

�(rn) = (1� b)
B(b)

e�
rn��
�

T
R T
0
e�A(rn)(T�t)dt+ e�rnTB(b)

45While Assumption 2 requires rn to be independent of (yn�1; yn�2:::), it leaves the auto-correlation
of (rn)n unrestricted, in the space of Markov chains. Also, Assumption 2 allows for (a restricted form
of) auto-correlation of (yn)n as well as the correlation of yn and rn:
46 For the use of Markov Modulated chains, see Saporta (2005) in her remarks following Theorem

2, or Saporta (2004), section 2.9, p.80. See instead Roitersthein (2007) for general Markov Modulated
processes.
47We could only require that the mean of the unconditional distribution of � is less than 1; that is if

E (�) < 1. But in this case the stationary distribution of wealth may not have a mean.
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Therefore �n > 0 and bounded. Furthermore, note that

�(rn; yn) = �(rn)yn

Z T

0

e(g�rn)tdt

and the support of yn is bounded by Assumption 2. Thus (�n)n � 0 and is bounded.
Therefore (�n; �n) is a MarkovModulated Process provided (�n)n is positive and bounded.
Furthermore, Assumption 3 (ii) implies directly that (ii) P �� < 1: Assumption 3 (iii)

also directly implies �i > 1 for some i = 1; :::m. Finally P is the transition matrix of
both rn as well as of �n: Therefore Assumption 3 (iv) implies that the elements of the
trace of the transition matrix of �n are positive: �
Proof of Theorem 1. We �rst de�ne rigorously the Regularity of the Markov

Modulated process (�n; �n)n. In singular cases, particular correlations between �n and
�n can create degenerate distributions that eliminate the randomness wealth. We rule
this out by means of technical regularity conditions:48

The Markov Modulated process (�n; �n)n is regular, that is

Pr (�0x+ �0 = x) 6= 1 for any x 2 R+
and the elements of the vector �� = fln�1::: ln�mg � Rm+ are not integral multiples of
the same number.49

Saporta (2005, Proposition 1, section 4.1) establishes that, for �nite Markov chains,

limN!1

 
E
N�1Y
n=0

(��n)
�

! 1
N

= � (A�P 0) ;where � (A�P 0) is the dominant root of A�P 0:50.

Condition 2 can then be expressed as � (A�P 0) = 1: The Theorem then follows directly
from Saporta (2005), Theorem 1, if we show i) that there exists a � that solves � (A�P 0) =
1; and that ii) such � is > 1. Saporta shows that � = 0 is a solution to � (A�P 0) = 1;
or equivalently to ln (� (A�P 0)) = 0: This follows from A0 = I and P being a stochastic
matrix. Let E� (r) denote the expected value of �n at its stationary distribution (which
exists as it is implied by the ergodicity of (rn)n, in turn a consequence of Assumption
2). Saporta, under the assumption E� (r) < 1; shows that d ln�(A�P 0)

��
< 0 at � = 0; and

that ln (� (A�P 0)) is a convex function of �.51 Therefore, if there exists another solution
� > 0 for ln (� (A�P 0)) = 0; it is positive and unique.
48We formulate these regularity conditions on (�n; �n)n, but they can be immediately mapped back

into conditions on the stochastic process (rn; yn)n .
49Theorems which characterize the tails of distributions generated by equations with random multi-

plicative coe¢ cients rely on this type of "non-lattice" assumptions from Renewal Theory; see for example
Saporta (2005). Versions of these assumption are standard in this literature; see Feller (1966).)
50Recall that the matrix AP 0 has the property that the i0th column sum equals the expected value

of �n conditional on �n�1 = �i. When (�n)n is i:i:d:, P has identical rows, so transition probabilities
do not depend on the state �i: In this case A�P 0 has identical column sums given by E�� and equal to
� (A�P 0) :
51This follows because limn!1

1
n lnE (�0��1:::�n�1)

�
= ln (� (A�P 0)) and because the moments of

non-negative random variables are log-convex (in �); see Loeve(1977), p. 158.
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To assure that � > 1 we replace the condition E� (r) < 1 with (ii) of Proposition 3,
P �� < 1: This implies that the column sums of AP 0 are < 1: Since AP 0 is positive and
irreducible, its dominant root is smaller than the maximum column sum. Therefore for
� = 1; � (A�P 0) = � (AP 0) < 1. Now note that if (�n; �n)n is re�ective, by Proposition
3, Pii > 0 and �i > 1; for some i:This implies that the trace of A�P 0 goes to in�nity if
� does (see also Saporta (2004) Proposition 2.7). But the trace is the sum of the roots
so the dominant root of A�P 0; � (A�P 0) ; goes to in�nity with �. It follows that for the
solution of ln (� (A�P 0)) = 0;we must have � > 1: This proves ii). �
Proof of Theorem 2. If we denote with � the product measure of the stationary

distribution of (w(0); rn), the cumulative distribution function of the stationary distrib-
ution of wealth of household of age � , F� (w) is given by the map (7).

F� (w) =
lX
i=1

�
Pr(yi)

Z
If�w(rn;�)w(0)+�y(rn;�)yi�wgd�

�
where I is an indicator function.
The cumulative distribution function of wealth w in the population is then

F (w) =

Z T

0

F� (w)
1

T
d�

Note that

P (w(�) > w) =
lX
i=1

�
Pr(yi)

Z
If�w(rn;�)w(0)+�y(rn;�)yi>wgd�

�
and �w(rn; �) and �y(rn; �) are continuous functions of rn and � . Since the number of
states of rn is �nite and � 2 [0; T ], there exist �Lw, �Uw , and �Uy such that 0 < �Lw �
�w(rn; �) � �Uw and �y(rn; �) � �Uy . We have

If�w(rn;�)w(0)+�y(rn;�)yi>wg � If�Lww(0)>wg

and
If�w(rn;�)w(0)+�y(rn;�)yi>wg � If�Uww(0)+�Uy �yl>wg

Hence

P

�
w(0) >

w

�Lw

�
� P (w(�) > w) � P

 
w(0) >

w � �Uy �yl
�Uw

!
We know

P (W > w) =

Z T

0

P (w(�) > w)
1

T
d�
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Thus

P

�
w(0) >

w

�Lw

�
� P (W > w) � P

 
w(0) >

w � �Uy �yl
�Uw

!
Thus �

�Lw
��
c � lim inf

w!+1

P (W > w)

w��
� lim sup

w!+1

P (W > w)

w��
�
�
�Uw
��
c

since limw!+1
P (w(0)>w)

w�� = c. We conclude that the wealth distribution in the population,
W , has a power tail with the same exponent �, i.e.,

0 < c1 � lim inf
w!+1

Pr(W > w)

w��
� lim sup

w!+1

Pr(W > w)

w��
� c2: �

We can also show that,
When (rn)n is i:i:d:, the asymptotic power law property with the same power � is

preserved for each age cohort and the whole economy: 9~c > 0 such that

lim
w!+1

Pr(W > w)

w��
= ~c:

Proof. When (rn)n is i:i:d:

P (W > w) =

Z T

0

P (w(�) > w)
1

T
d�

=
lX
i=1

mX
j=1

�
Pr(yi) Pr(rj)

Z T

0

P

�
w(0) >

w � �y(rj; �)yi
�w(rj; �)

�
1

T
d�

�
Since �w(rj; �) and �y(rj; �) are continuous functions of � on [0; T ], there exist ~� j, �̂ j 2
[0; T ] such that for 8t 2 [0; T ], �w(rj; �) � �w(rj; ~� j) and �y(rj; �) � �y(rj; �̂ j). Thus

P

�
w(0) >

w � �y(rj; �)yi
�w(rj; �)

�
� P

�
w(0) >

w � �y(rj; �̂ j)yi
�w(rj; ~� j)

�
When w is su¢ ciently large,

P
�
w(0) >

w��y(rj ;�̂j)yi
�w(rj ;~�j)

�
w��

is bounded,

since limw!+1
P (w(0)>w)

w�� = c. Thus by bounded convergence theorem, we have

lim
w!+1

Z T

0

P
�
w(0) >

w��y(rj ;�)yi
�w(rj ;�)

�
w��

1

T
d� =

Z T

0

lim
w!+1

P
�
w(0) >

w��y(rj ;�)yi
�w(rj ;�)

�
w��

1

T
d�
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Thus

lim
w!+1

P (W > w)

w��
=

lX
i=1

mX
j=1

0@Pr(yi) Pr(rj)Z T

0

lim
w!+1

P
�
w(0) >

w��y(rj ;�)yi
�w(rj ;�)

�
w��

1

T
d�

1A
= c

mX
j=1

�
Pr(rj)

Z T

0

(�w(rj; �))
� d�

�
: �

Proof of Proposition 1. Since � > 1, (�n)
� is an increasing convex function in

�n. If �(rn) is a convex function of rn, then �(rn)� is also a convex function of rn. And
hence ��(rn)� is a concave function of rn. By the second order stochastic dominance we
have E (��(rn)�) � E (��(r0n)�) so E�(rn)� � E�(r0n)� and 1 = E�(rn)� � E�(r0n)�.
Let �0 solve E�(r0n)

�0 = 1. Suppose �0 > �. By Holder�s inequality we have E�(r0n)
� <�

E�(r0n)
~�
� �
�0 = 1. This is a contradiction. Thus we have �0 � �. �

Proof of Proposition 2. From the de�nition of �n, we have

�(rn) =
(1� b)ernT

��
1
� (1� b)

��1
�
R T
0
eA(rn)tdt+ 1

it is easy to show that @�n
@�
> 0:Thus an in�nitesimal increase in � shifts the state space

a to the right. Therefore elements of the non-negative matrix [A�P 0] increase, which
implies that the dominant root � (A�P 0) is increases. However we know from Saporta
(2005) that ln (� (A�P 0)) is a convex function of �:52 At � = 0 it is equal to zero, since
A0 is the identity matrix and P is a stochastic matrix with dominant root equal to unity.
At � = 0 the function ln (� (A�P 0)) is also decreasing. (See Saporta (2005), Proposition
2, p.1962.) Then ln (� (A�P 0)) must be increasing at the positive value of � which solves
ln� (A�P 0) = 0: Therefore to preserve ln (� (A�P 0)) = 0, � must decline. �
Proof of Proposition 3. From (4), we have

�(rn) =
ernT

��
1
� (1� b)�

1
�
R T
0
eA(rn)tdt+ (1� b)�1

Thus @�n
@b
< 0. To see @�n

@�
< 0, we rewrite the expression of �(rn) as

�(rn) = (1� b)
B(b)

e�
rn��
�

T
R T
0
e�A(rn)(T�t)dt+ e�rnTB(b)

Note that A(rn) = rn � rn��
�
and B(b) = �

1
� (1� b)

1��
� . @A(rn)

@rn
= ��1

�
� 0, since � � 1

by Assumption 1. And also B(b) > 0. Thus @�n
@rn

> 0. Higher � means lower rn. We have

52See Loeve (1977), page 158.
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@�n
@�
< 0. Now the proof is identical to the proof of Proposition 2 in the reverse direction

since @�n
@b
< 0 and @�n

@�
< 0 whereas @�n

@�
> 0. �

Proof of Proposition 4. From

ln�n = �n + ��n�1

we have
nX
t=1

ln�t = ��0 + �n +

n�1X
t=1

(1 + �)�t

Thus

lim
n!+1

1

n
ln

 
E

 
nY
t=1

�t

!�!
= lim

n!+1

1

n
ln
�
Ee�

Pn
t=1 ln�t

�
=

lim
n!+1

1

n
lnEe�

Pn�1
t=1 (1+�)�t = lim

n!+1

1

n

n�1X
t=1

lnEe�(1+�)�t =

lim
n!+1

1

n

n�1X
t=1

lnEe�(1+�)�t = lnEe�(1+�)�t

Thus limn!+1
1
n
ln

 
E

 
nY
t=1

�t

!�!
= 0 implies

Ee�(1+�)�t = 1:

Consider in turn the case in which

ln�n = � ln�n�1 + �n:

We have
nX
t=1

ln�t =
�(1� �n)
1� � ln�0 +

nX
t=1

1� �n�t+1

1� � �t

Thus

lim
n!+1

1

n
ln

 
E

 
nY
t=1

�t

!�!
= lim

n!+1

1

n
ln
�
Ee�

Pn
t=1 ln�t

�
=

lim
n!+1

1

n
ln

�
Ee�

Pn
t=1

1��n�t+1
1�� �t

�
= lim

n!+1

1

n

nX
t=1

ln

�
Ee

1��n�t+1
1�� ��t

�
= ln

�
Ee

1
1����t

�

Thus limn!+1
1
n
ln

 
E

 
nY
t=1

�t

!�!
= 0 implies

Ee
�
1�� �t = 1: �
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