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“When you ain’t got nothin’, you got nothin’ to lose.” Bob Dylan

1. INTRODUCTION

The absence of self-control is often cited as an important contributory cause of persis-
tent poverty, particularly (but not exclusively) in developing countries. Recent research
indicates that the poor not only borrow at high rates,1 but also forego profitable small
investments.2 To be sure, traditional theory — based on high rates of discount and min-
imum subsistence needs — can take us part of the way to an explanation. But it cannot
provide a full explanation, for the simple reason that the poor exhibit a documented de-
sire for commitment.3 The fact that individuals are often willing to pay for commitment

1Informal interest rates in developing countries are notoriously high; see, for example Aleem (1990). But
even formal interest rates are extremely high; for instance, the rates charged by microfinance organiza-
tions. Bangladesh recently capped formal microfinance interest rates at 27% per annum, a restriction
frowned upon by the Economist (2010). Banerjee and Mullainathan (2010) cite other literature and argue
that such loans are taken routinely and not on an emergency basis.
2Goldstein and Udry (1999) and Udry and Anagol (2006) document high returns to agricultural investment
in Ghana, even on small plots, while Duflo, Kremer, and Robinson (2010) identify high rates of return to
small amounts of fertliizer use in Kenya, and de Mel, McKenzie, and Woodruff (2008) demonstrate high
returns to microenterprise in Sri Lanka. Banerjee and Duflo (2005) cite other studies that also show high
rates of return to small investments.
3See, for example, Shipton (1992) on the use of lockboxes in Gambia, Benartzi and Thaler (2004) on
employee commitments to save out of future wage increases in the United States, and Ashraf, Karlan, and
Yin (2006) on the use of a commitment savings product in the Philippines. Aliber (2001), Gugerty (2001,
2007) and Anderson and Baland (2002) view ROSCA participation as a commitment device; see also the
theoretical contributions of Ambec and Treich (2007) and Basu (2011). Duflo, Kremer, and Robinson
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devices, such as illiquid deposit accounts, suggests that time inconsistency and imperfect
self-control are important explanations for low saving and high borrowing, complemen-
tary to those based on impatience, minimum subsistence or a failure of aspirations.

A growing literature already recognizes that the (in)ability to exercise self-control is
central to the study of intertemporal behavior.4 Our interest lies in how self-control and
economic circumstances interact. If self-control (or the lack thereof) is a fixed trait, in-
dependent of personal economic circumstances, then the outlook for policy interventions
that encourage the poor to invest in their futures – particularly one-time or short-term
interventions – is not good. But another possibility merits consideration: poverty per
se may damage self-control. If that hypothesis proves correct, then the chain of causal-
ity is circular, and poverty is itself responsible for the low self-control that perpetuates
poverty.5 In that case, policies that help the poor begin to accumulate assets may be
highly effective, even if they are temporary.

The preceding discussion motivates the central question of this paper: is there some a
priori reason to expect poverty to perpetuate itself by undermining an individual’s abil-
ity to exercise self-control? Our objective requires us to define self-control formally
and precisely. The term itself implies an internal mechanism, so we seek a definition
that does not reference any externally-enforced commitment devices. Following Strotz
(1956), Phelps and Pollak (1968) and others, we adopt the view that self-control prob-
lems arise from time-inconsistent preferences: the absence of self-control is on display
when an individual is unable to follow through on a desired plan of action. What then
constitutes the exercise of self-control? We take guidance from the seminal work of the
psychologist George Ainslee (1975, 1992), who argued that people maintain personal
discipline by adopting private rules (e.g., “never eat dessert”), and then construing local
deviations from a rule as having global significance (e.g., “if I eat dessert today, then I

(2010) explain fertilizer use (or the lack of it) in Kenya as a lack of commitment. In the ongoing debate
on whether to overhaul the public distribution system for food in India to an entirely cash-based program,
individual commitment issues figure prominently; see Khera (2011).
4See, for instance, Akerlof (1991), Ainslie (1992), Thaler (1992), Laibson (1997), or O’Donoghue and
Rabin (1999). There are social aspects to the problem as well. Excess spending may be generated by
discordance within the household (e.g., husband and wife have different discount factors) or by demands
from the wider community (e.g., sharing among kin or community).
5Arguments based on aspiration failures generate parallel traps: poverty can be responsible for frustrated
aspirations, which stifle the incentive to invest. See, e.g., Appadurai (2004), Ray (2006), Genicot and
Ray (2009) and the recent United Nations Development Program Report for Latin America based on
this methodology. However, this complementary approach does not generate a demand for commitment
devices.
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will probably eat dessert in the future as well”). It is natural to model such behavior as
a subgame-perfect Nash equilibrium of a dynamic game played by successive incarna-
tions of the single decision-maker.6 For such a game, any equilibrium path is naturally
interpreted as a personal rule, in that it describes the way in which the individual is sup-
posed to behave. Moreover, history-dependent equilibria can capture Ainslee’s notion
that local deviations from a personal rule can have global consequences.7 For example,
in an intrapersonal equilibrium, an individual might correctly anticipate that violating
the dictum to “never eat dessert” will trigger an undesirable behavioral pattern. Under
that interpretation, the scope for exercising self-control is sharply defined by the set of
outcomes that can arise in subgame-perfect Nash equilibria.

We assume that time-inconsistency arises from quasi-hyperbolic discounting (also known
as βδ-discounting), a standard model of intertemporal preferences popularized by Laib-
son (1994, 1996, 1997) and O’Donoghue and Rabin (1999). To determine the full scope
for self-control, we study the set of all subgame-perfect Nash equilibria. To avoid ex-
cluding any viable personal rules, we impose no restrictions whatsoever on strategies
(we do not require stationarity, for instance, or that the decision-maker punish deviations
by reverting to the Markov-perfect equilibrium). This approach contrasts with the vast
majority of the existing literature, which focuses almost exclusively on Markov-perfect
equilibria (which allow only for payoff-relevant state-dependence), thereby ruling out
virtually all interesting personal rules.8 By studying the entire class of subgame-perfect
Nash equilibria, we can determine when an individual can exercise sufficient self-control
to accumulate greater wealth, and when she cannot. In particular, we can ask whether
self-control is more difficult when initial assets are low, compared to when they are high.

The model we use is standard. There is a single asset which can be accumulated or
depleted at some fixed rate of return. By using suitably defined present values, all flow
incomes are nested into the asset itself. The core restriction is a strictly positive lower
bound on assets, to be interpreted as a credit constraint. In other words, the individual
cannot instantly consume all future income. The lower bound may be interpreted as
referring to that fraction of present-value income which she cannot currently consume.

6This approach is originally due to Strotz (1956).
7This interpretation of self-control has been offered previously by Laibson (1997), Bernheim, Ray, and
Yeltekin (1999), and Benhabib and Bisin (2001). See Bénabou and Tirole (2004) for a somewhat different
interpretation of Ainslee’s theory.
8Exceptions include Laibson (1994), Bernheim, Ray, and Yeltekin (1999), and Benhabib and Bisin (2001).
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Apart from this lower bound, the model is constructed to be scale-neutral. We assume
that individual payoff functions are homothetic, so we deliberately eliminate any precon-
ceived relationship between assets and savings that is dependent on preferences alone.
(We return to this point when connecting our model to related literature.) Discounting
is quasi-hyperbolic.

It is notoriously difficult to characterize the set of subgame-perfect Nash equilibria (or
equilibrium values) for all but the simplest dynamic games, and the problem of self-
control we study here is, alas, no exception. We therefore initially examined our central
question by solving the model numerically using standard tools. Figure 1 illustrates
the results of one such exercise (which we explain at greater length later in the paper).
The horizontal axis measures assets in the current period, and the vertical axis measures
assets in the next period. Thus, points above, on, and below the 45 degree line indicate
asset accumulation, maintenance, and decumulation respectively. In this exercise, there
is an asset threshold below which all equilibria lead to decumulation. Thus, with low
assets, it is impossible to accumulate assets by exercising self-control through any viable
personal rule; on the contrary, assets necessarily decline until the individual’s liquidity
constraint binds. In short, we have a poverty trap.

However, above that threshold, there are indeed viable personal rules that allow the in-
dividual to accumulate greater assets. Moreover, as we will see later, the most attractive
equilibria starting from above the critical threshold lead to unbounded accumulation.

The example suggests both our central conjecture and a (deceptively) simple intuitive
argument in support of it. If imperfect capital markets impose limits on the extent
to which an individual can borrow against future income, then potential intrapersonal
“punishments” (that is, the consequences of deviating from a personal rule) cannot be
all that bad when assets are low. If these mild repercussions are suitably anticipated, an
individual will fail to exercise self-control. However, when an individual has substantial
assets, she also has more to lose from undisciplined future behavior, and hence potential
punishments are considerably more severe (in relative terms). So an individual would
be better able to accumulate additional assets through the exercise of self-control when
initial assets are higher. Obviously, if time inconsistency is sufficiently severe, decu-
mulation will be unavoidable regardless of initial assets, and if it is sufficiently mild,
accumulation will be possible regardless of initial assets (provided the individual is suf-
ficiently patient). But for intermediate degrees of time inconsistency, we would expect
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FIGURE 1. ACCUMULATION AT DIFFERENT ASSET LEVELS.

decumulation to be unavoidable with low assets, and accumulation to be feasible with
high assets.

It turns out, however, that the problem is considerably more complicated than this sim-
ple intuition suggests. (The overwhelmingly numerical nature of our earlier working
paper, Bernheim, Ray, and Yeltekin (1999), bears witness to this assertion.) The credit
constraint at low asset levels infects individual behavior at all asset levels. In particular,
they affect the structure of “worst personal punishments” in complex ways, as assets are
scaled up. The example of Figure 1 illustrates this point quite dramatically: there are
asset levels at which the lowest level of continuation assets jumps up discontinuously.
As assets cross those thresholds, the worst punishment becomes less rather than more
severe, contrary to the intuition given above. Thus, on further reflection, it is not at all
clear that the patterns exhibited in Figure 1 will emerge more generally.

Our main theoretical result demonstrates, nevertheless, that the central qualitative prop-
erties of Figure 1 do persist. For intermediate degrees of time inconsistency (such that
accumulation is feasible from some but not all asset levels), there is a threshold asset
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level below which accumulation is impossible, and above which decumulation is avoid-
able. There is always an asset level below which liquid wealth is exhausted in finite time
(and hence a poverty trap), as well as a level above which the most attractive equilibria
give rise to unbounded accumulation.

One might object to our practice of examining the entire set of subgame-perfect equi-
libria on the grounds that many such equilibria may be unreasonably complex. On the
contrary, we show that worst punishments have a surprisingly simple “stick-and-carrot”
structure:9 following any deviation from a personal rule, the individual consumes ag-
gressively for one period, and then returns to an equilibrium path that maximizes her
(equilibrium) payoff exclusive of the hyperbolic factor. Thus, all viable personal rules
can be sustained without resorting to complex forms of history-dependence.10

Our analysis has a number of provocative implications for economic behavior and public
policy. First (and most obviously), the relationship between assets and self-control ar-
gues for the use of “pump-priming” interventions that encourage the poor to start saving,
and rely on self-control to sustain frugality at higher levels of assets. Second, policies
that improve access to credit (thereby relaxing liquidity constraints) reduce the level of
assets at which asset accumulation becomes feasible, thereby helping more individuals
to become savers (although those who fail to make the transition fall further into debt).
Intuitively, with greater access to credit, the consequences of a break in discipline be-
come more severe, and hence that discipline is easier to sustain to begin with. Third,
the opportunities to make commitments may be significantly less valuable to those with
self-control problems than previous analyses have implied. For example, in certain cir-
cumstances, individuals with self-control problems will avoid opportunities to lock up
funds (e.g., in retirement accounts or fixed deposit schemes), even when they wish to
save. This occurs when desired saving exceeds the maximum amount that can be locked
up, but not by too much. In such cases, locking up funds moderates the consequences
of a lapse in discipline, thereby making self-control more difficult to sustain. Finally,

9Though there is a resemblance to the stick-and-carrot punishments in Abreu (1988), the formal structure
of the models and the arguments differ considerably. Most obviously, Abreu considered simultaneous-
move repeated games, rather than sequential-move dynamic games with state variables.
10Indeed, Markov equilibria in this model appear to be more “complex”, despite their “simple” depen-
dence on just the payoff-relevant state. They typically involve several jump discontinuities, and their pay-
off behavior as a function of initial assets, suitably normalized, is often nonmonotonic. Also, identifying
Markov equilibria is more computationally challenging than determining the key features of subgame-
perfect equilibria.
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we argue that the model can potentially provide an explanation for the observed “excess
sensitivity” of consumption to income.

As noted above, we build on an earlier unpublished working paper (Bernheim, Ray, and
Yeltekin (1999)), which made our main points through simulations, but did not contain
theoretical results. Our work is most closely related to that of Banerjee and Mullainathan
(2010), who also argue that self-control problems give rise to low asset traps. Though the
object of their investigation is similar, their analysis has little in common with ours. They
examine a novel model of time-inconsistent preferences, in which rates of discount differ
from one good to another. “Temptation goods” (those to which greater discount rates
are applied) are inferior by assumption; this assumed non-hometheticity of preferences
automatically builds in a tendency to dissave when resources are limited, and to save
when resources are high.

It is certainly of interest to study poverty traps by hardwiring non-homothetic self-
control problems into the structure of preferences. Whether a poor person spends pro-
portionately more on temptation goods than a rich person (alcohol versus iPads, say)
then becomes an empirical matter. But we avoid such hardwiring entirely by studying
homothetic preferences in an established model of time-inconsistency. The phenomena
we study are traceable to a single built-in asymmetry: an imperfect credit market. Ev-
ery scale effect in our setting arises from the interplay between credit constraints and
the incentive compatibility constraints for personal rules. The resulting structure, in our
view, is compelling in that it requires no assumption concerning preferences that must
obviously await further empirical confirmation. In summary, though both theories of
poverty traps invoke self-control problems, they are essentially orthogonal (and hence
potentially complementary): Banerjee and Mullainathan’s analysis is driven by assumed
scaling effects in rewards, while ours is driven by scaling effects in punishments arising
from assumed credit market imperfections.11

The rest of the paper is organized as follows. Section 2 presents the model, and Section
3 characterizes the set equilibrium values. Section 4 defines self control, and Section
5 studies the relationship between self-control and the initial level of wealth. Section

11Our model is also related to Laibson (1994) and Benhabib and Bisin (2001), except for the all-important
difference of an imperfect credit market. These two papers consider history-dependent strategies in a fully
scalable model, in which both preferences are homothetic and there is no credit constraint. It follows, as
we observe more formally below, that every equilibrium path can be replicated, by scaling, at all levels of
initial assets, so that there is no relationship between poverty and self-control.
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6 describes some implications of the theory. Section 7 conducts numerical exercises to
supplement the analytical findings. Section 8 presents conclusions and some directions
for future research. Proofs are collected in Section 9.

2. MODEL

2.1. Feasible Set and Preferences. The feasible set links current assets, current con-
sumption and future assets, starting from an initial asset level A0:

(1) ct = At − (At+1/α) ≥ 0,

and, in addition, imposes a lower bound on assets

(2) At ≥ B > 0.

Our leading interpretation of the lower bound B is that it is a credit constraint.12 For
instance, if Ft stands for financial wealth at date t and y for income at each date, then
At is the present value of financial and labor assets:

At = Ft +
αy

α− 1
.

If credit markets are perfect, the individual will have all of At at hand today, and B = 0.
We are not directly interested in this case (our analysis presumes B > 0) but it is easy
enough to analyze; see Laibson (1994). On the other hand, if she can borrow only some
fraction (1− λ) of lifetime income, then B = λαy/(α− 1).

Individual have quasi-hyperbolic preferences: lifetime utility is given by

u(c0) + β
∞∑
t=1

δtu(ct),

where β ∈ (0, 1) and δ ∈ (0, 1). We assume throughout that u has the constant-elasticity
form

u(c) =
c1−σ

1− σ
for σ > 0, with the understanding that σ = 1 refers to the logarithmic case u(c) = ln c.

There is a good reason for the use of the constant-elasticity formulation. We wish our
problem to be entirely scale-neutral in the absence of the credit constraint, so as to

12Another interpretation of B is that it is an investment in some fixed illiquid asset. We return to this
interpretation when we talk about policy implications.
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isolate fully the effect of that constraint. While we don’t formally analyze the case in
which B = 0, it is obvious that scale-neutrality is achieved there: any path with perfect
credit markets can be freely scaled up or down with no disturbance to its equilibrium
properties. Put another way, every scale effect in this paper will arise from the interplay
between credit constraints and the incentive compatibility constraints for personal rules.

2.2. Restrictions on the Model. The Ramsey program from A is the asset sequence
{At} that maximizes

∞∑
t=0

δt
c1−σt

1− σ
,

with initial stock A0 = A. It is constructed without reference to the hyperbolic factor β.

The Ramsey program is well-defined provided that utilities do not diverge, for which we
assume throughout that

(3) γ ≡ δ1/σα(1−σ)/σ < 1.

We will also be interested in situations in which the Ramsey program exhibits growth,
which imposes

(4) δα > 1.

Under (3) and (4), it is easy to see that along the Ramsey program,

ct = (1− γ)At,

assets grow exponentially:

At+1 = A0

(
δ1/σα1/σ

)t
= A0 (γα)t ,

and the value of the program from A — call it R(A) — is finite.

Before we turn to a precise definition of equilibrium, note that when σ ≥ 1, utility is
unbounded below and it is possible to sustain all sorts of outcomes by taking recourse
to punishments that either impose zero consumption or a progressively more punitive
sequence of non-zero consumptions (see Laibson (1994) for a discussion of this point).
These punishments rely on the imposition of unboundedly negative utility. We find such
actions unrealistic, and eliminate them by assuming that consumption is bounded below
at every asset level. More precisely, we assume that at every date,

(5) ct ≥ νAt,
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where ν is to be thought of as a small but positive number. It is formally enough to
presume that ν < 1 − γ, so that Ramsey accumulation can occur unhindered, but the
reader is free to think of this bound as tiny.

2.3. Equilibrium. A choice of continuation assetA′ is feasible givenA, ifA′ ∈ [B,α(1−
υ)A]. A path is any sequence of assets with At+1 feasible given At; so (1), (2) and (5)
are satisfied. A history ht at date t is a “truncated path” of assets (A0(ht) . . . At(ht)) up
to date t, so that At ≡ A(ht) is the asset level at the start of date t. A policy φ specifies
a continuation asset φ(ht) following every history, which must be feasible given A(ht).
If ht is a history and x a feasible asset choice, denote by ht.x the subsequent history
generated by this choice. A policy φ defines a value Vφ by

Vφ(ht) ≡
∞∑
s=t

δs−tu

(
A(hs)−

φ(hs)

α

)
,

where hs (for s > t) is recursively defined from ht by hs+1 = hs.φ(hs) for s ≥ t.
Similarly, φ also defines a payoff Pφ by

Pφ(ht) ≡ u

(
A(ht)−

φ(ht)

α

)
+ βδVφ(ht.φ(ht)),

for every history ht. Values exclude the hyperbolic factor β, while payoffs include them.

An equilibrium is a policy such that at every history ht and x feasible given A(ht),

(6) Pφ(ht) ≥ u
(
A(ht)−

x

α

)
+ δβVφ(ht.x).

Equation (6) makes it clear that an equilibrium may be viewed as the assignment of a
continuation value for every choice of continuation asset (at any given history), and then
taking the actual continuation asset at that history to be the one that maximizes the right
hand side of (6) over all these specifications. For some of our observations, it will be
useful to presume that a convex set of equilibrium continuation values is available at
every asset level. For this reason, we suppose that continuation values can be chosen (if
needed) using a public randomization device.

3. EXISTENCE AND CHARACTERIZATION OF EQUILIBRIUM

For each initial asset level A ≥ B, let V(A) be the set of all equilibrium values available
at asset level A. If V(A) is nonempty, let H(A) and L(A) be its supremum and infimum
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values. It is obvious from our assumed lower bound on consumption and from utility
convergence (see (3)) that

−∞ < L(A) ≤ H(A) ≤ R(A) <∞,

whereR(A) is the Ramsey value defined earlier. Once we rule out unrealistic cascades of
punishments that generate arbitrarily negative utility, a tighter and more intuitive bound
is available for worst punishments:

OBSERVATION 1. Suppose that V(A) is nonempty for every A ≥ B. Then

(7) L(A) ≥ u

(
A− B

α

)
+ δL(B) ≥ u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)

Notice how Observation 1 kicks in as long as we place any (small) lower bound on
consumption, as described in (5).13 It gives us an anchor to iterate a self-generation
map, both for analytical use and for equilibrium computation. To this end, consider a
nonempty-valued correspondenceW on [B,∞) such that for all A ≥ B,

(8) W(A) ⊆
[
u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)
, R(A)

]
.

Say that W generates the correspondence W ′ if for every A ≥ B, W ′(A) is the col-
lection of all values W such there is a feasible asset choice x and V ∈ W(x) — a

13In contrast, if there is no lower bound, and utilities are unbounded below, we can generate artificially
low punishments by effectively using “Ponzi threats”.



12

continuation {x, V } in short — with

(9) W = u
(
A− x

α

)
+ δV,

while for every feasible x′, there is V ′ ∈ W(x′) such that

(10) u
(
A− x

α

)
+ βδV ≥ u

(
A− x′

α

)
+ βδV ′.

Given Observation 1 and the Ramsey upper bound on equilibrium values, standard ar-
guments tell us that the equilibrium correspondence V generates itself, and indeed, it
contains any other correspondence that does so.

Define a sequence of correspondences on [B,∞), {Vk}, by

V0(A) =

[
u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)
, R(A)

]
.

for every A ≥ B, and recursively, Vk generates Vk+1 for all k ≥ 0. It is obvious that the
graph of Vk contains the graph of Vk+1. We assert

PROPOSITION 1. An equilibrium exists from any initial asset level, so that the equilib-
rium correspondence V is nonempty-valued. Moreover, for every A ≥ B,

(11) V(A) =
∞⋂
k=0

Vk(A).

and V has closed graph.

This proposition is useful in that it establishes existence of equilibrium, though the
method used may not apply more generally to all games with state variables.14 The “gen-
eration logic” of the proposition inspires algorithms for numerical calculations along
well-known lines, which we use in Section 7.15

Figure 2 illustrates a set of equilibrium values. Imagine supporting the highest possible
value H(A1) at asset level A1. That might require the choice of asset A2 — and so
would be the stipulation of the equilibrium policy — followed by the continuation value
H(A2). Any other choice would be followed by other continuation values designed to
discourage that choice, so that the inequality in (6) holds. The figure illustrates the “best”
14For more general existence theorems, see Goldman (1980) and Harris (1985).
15Incidentally note that the closed-graph property does not follow from a standard nested compact sets
argument, because the sets in question (the graphs of Vk) are not compact.
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way of doing this under the presumption that the equilibrium value set is compact-valued
and has closed graph: simply choose the worst continuation value L(x) if x 6= A2.

4. SELF CONTROL

Viewed in the spirit of Ainslee’s definition, self-control refers to a possibility; that is,
to a feature of some element of the equilibrium correspondence. One might ask, for
instance, if the Ramsey outcome itself is an equilibrium. That would require, of course,
that the agent entirely transcend her hyperbolic urges. All other attempts, including
accumulation at rates close to the Ramsey path, must then be deemed a failure (of self-
control), which we find too strong. We therefore impose a weak definition: there is self-
control at asset levelA if the agent is capable of positive saving atA in some equilibrium.

To be sure, we might be interested in whether the individual is capable of indefinite accu-
mulation. Say that there is strong self-control at A if the agent is capable of unbounded
accumulation — i.e., At →∞— for some equilibrium path emanating from A.

Now we look at the flip side of self-control. Clearly, we must define the absence of self-
control as a situation in which accumulation isn’t possible under any equilibrium. But
that failure is compatible with several outcomes: the stationarity of assets, a downward
spiral of assets to a lower level that nevertheless exceeds the lower bound, or a progres-
sive downward slide all the way to the minimal level B. In a symmetric way, we single
out two features: say that self control fails at A if every equilibrium continuation asset
is strictly smaller than A, and more forcefully, that there is a poverty trap at asset A if
in every equilibrium, assets decline over time from A to the lower bound B.

There is intermediate ground between strong self-control and a poverty trap: it is, in
principle, possible for an agent to be incapable of indefinite accumulation, while at the
same time she can avoid the poverty trap.

That said, there are situations in which self-control is possible at all asset levels. For
instance, if β is close to 1, there is (almost) no time-inconsistency and all equilibria
should exhibit accumulation, given our assumption that the Ramsey program involves
indefinite growth. Conversely, if the agent exhibits a high degree of hyperbolicity (β
small), there may be a failure of self-control no matter what asset level we consider.
Call a case uniform if there are no switches: either there is no failure of self control at
every asset level, or there is no self-control at every asset level.
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A good example of uniformity is given by the case in which credit markets are perfect.
While we don’t study perfect credit markets in this paper, the observation is worth not-
ing: if continuation asset x can be sustained at asset level A, then continuation asset λx
can be just as easily sustained when the asset level is λA, for any λ > 0. Indeed, we’ve
deliberately constructed the model in this fashion, so to understand better the “direction
of scale bias” created by introducing imperfect credit markets.

The nonuniform cases, then, are of interest to us. In these cases, self-control is possible
at some asset level A, while there is a failure of self-control at some other asset level
A′. Whether A′ is larger or smaller than A, or indeed, whether there could be several
switches back and forth, are among the central issues that we wish to explore. It should
be added that while we do not have a full characterization of when a case is nonuniform,
such cases exist in abundance (we confirm this by numerical analysis).

We close this section with an intuitive yet nontrivial characterization of self control.
Consider the largest continuation asset: the highest value of equilibrium asset X(A)

sustainable at A. The closed-graph property of Proposition 1 guarantees that X(A) is
well-defined and usc, and a familiar single-crossing argument tells us that it is non-
decreasing. Note that X(A) isn’t necessarily the value-maximizing choice of asset; it
could well be higher than that. Yet X(A) is akin to a sufficient statistic that can be used
to characterize all the concepts in this section.

PROPOSITION 2. (i) Self control is possible at A if and only if X(A) > A.

(ii) Strong self control is possible at A if and only if X(A′) > A′ for all A′ ≥ A.

(iii) There is a poverty trap at A if and only if X(A′) < A′ for all A′ ∈ (B,A].

(iv) There is uniformity if and only if X(A) ≥ A for all A ≥ B, or X(A) ≤ A for all
A ≥ B.

Parts (i) and (iv) of the proposition are obvious, but parts (ii) and (iii), while intuitive,
need a more extensive argument. Part (iii) will indeed follow from the additional obser-
vation that X is nondecreasing and usc. Part (ii) will need more work to prove. Yet, it is
useful to take the proposition on faith for now, as it will help us in visualizing the proof
of the main theorem.
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5. INITIAL ASSETS AND SELF-CONTROL

It is obvious that if B > 0, then “scale-neutrality” fails. For instance, at asset level B,
it isn’t possible to decumulate assets (by assumption), while that may be an equilibrium
outcome at A > B. This rather simplistic failure of neutrality opens the door to all sorts
of more interesting failures. For instance, accumulation at some asset level A may be
sustained by the threat of decumulation in the event of non-compliance; such threats will
not be credible at asset levels close to B.

These internal checks and balances are not merely technical, but descriptive (we feel)
of individual ways of coping with commitment problems. One coping mechanism is
“external”: an individual might commit to a fixed deposit account if available, or even
accounts that force her to make regular savings deposits in addition to imposing restric-
tions on withdrawal. We will have more to say about such mechanisms below. But the
other coping mechanism is “internal”: an agent might react to an impetuous expenditure
on her part by engaging in a behavior shift; for instance, she might go on a temporary
consumption spree. In our theory, such a binge must be a valid continuation equilibrium.
The threat of a “credible binge” might then help to keep the agent in check.

With this “internal mechanism” in mind, let’s ask why an abundance of assets might help
an individual to exhibit self-control. The ability to exercise control must depend on the
severity of the consequences following an impetuous act of consumption. One simple
intuition is that those consequences are more severe when the individual has more assets,
and hence more to lose. But we know that such an argument can run either way.16

In addition, the “severity of punishment” (even if suitably normalized) isn’t monotonic
in assets. Figure 3 shows a numerical example which makes this point. The left panel
shows various value selections from the equilibrium correspondence, as also the Ramsey
value. The lowest selection is L(A). It jumps several times; the diagram shows one such
jump between the values 7 and 8. The right hand panel describes the corresponding
choice of continuation assets. The jump in L(A) shows that in general, punishment
values (even after deflating by higher asset values) cannot be decreasing in A.

16For instance, in moral hazard problems with limited liability, a poor agent might face more serious
incentive problems than a rich one; see, e.g., Mookherjee (1997). On the other hand, the curvature of the
utility function will permit the inflicting of higher utility losses on poorer individuals, alleviating moral
hazard and conceivably permitting the poor to be better managers (Banerjee and Newman (1991)).
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FIGURE 3. JUMPS IN VALUES AND POLICIES

The jump in L is related to the failure of lower hemicontinuity of the constraint set
in the implicit minimization problem that defines lowest values. That constraint set is
constructed from the graph of the equilibrium value correspondence, in which all con-
tinuation values must lie. As assets converge down to some limit, discontinuously lower
values may become available, and as the numerical example illustrates, this phenome-
non cannot be ruled out in general. We return to this point after we explain the simple
structure of worst punishments in this model.

5.1. Worst Punishments. We will show that worst punishments involve a single spell
of “excessive” expenditure, followed by a return to (approximately) the best possible
continuation value. To formalize this notion, define, for any A > B, H−(A) by the left
limit of H(An) as An converges up to A, with An < A for all n. This is a well-defined
concept because H is nondecreasing and therefore possesses limits from the left.

PROPOSITION 3. The worst equilibrium value at any asset level A is implemented by
choosing the smallest possible continuation asset at A; call it Y . Moreover, if Y > B,
the associated continuation value V satisfies

V ≥ H−(Y ).



17

The proof is simple and instructive enough to be included in the main text.

Proof. Let Y be the smallest equilibrium choice of continuation asset at A, with associ-
ated continuation value V . Of course,

(12) u

(
A− Y )

α

)
+ βδV ≥ D(A),

where D(A) is the supremum of all “deviation payoffs” where every deviation to an
alternative asset choice is “punished” by the lowest equilibrium value available at that
asset.17 If (12) is slack, it is easy to show that Y must equal B and that V can be set
equal to L(B).18 That generates the lowest possible equilibrium value at A and there is
nothing left to prove; see the first inequality in Observation 1.

Otherwise (12) is binding for Y . In this case,

(13) u

(
A− Y

α

)
+ βδV = D(A) ≤ u

(
A− A′

α

)
+ βδV ′.

for any other equilibrium continuation {A′, V ′} at A. Because A′ ≥ Y by assumption,
(13) shows that V ′ ≥ V . It follows that

(14) u

(
A− Y

α

)
+ δV ≤ u

(
A− A′

α

)
+ δV ′,

so that once again, {Y, V } implements minimum value at A.

To complete the proof, suppose that Y > B while at the same time, V < H−(Y ).
Then it is obviously possible to reduce Y slightly while increasing continuation value
at the same time.19 Moreover, the new continuation has higher payoff, so it must be
supportable as an equilibrium. Yet it has a lower continuation asset, which contradicts
the definition of Y .

The heart of the argument resides in (14). If two continuations generate the same payoff,
the continuation that exhibits the larger upfront consumption must have the lower value.
Payoffs include the factor β, which values present consumption. When β is “removed”,
as it is in the computation of value, the continuation with the larger current consumption

17The function D(A) will be formally defined in Section 9, where we deal with various technicalities
arising from lack of the continuity in the value correspondence.
18For details, see Footnote 34 in Section 9.
19Because V < H−(Y ), there exists Y ′ < Y and V ′ ∈ V(Y ) such that V ′ > H−(Y ).
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has lower value. This is why worst punishments exhibit a large binge to begin with; in
fact, the largest possible credible binge. That binge is then followed by a reversion to
the best possible equilibrium value — or approximately so, in a sense made precise in
the proposition.20

Two more remarks are worth noting about lowest values, or optimal punishments. First,
the associated actions have an extremely simple and plausible structure. No unrealis-
tically complex rules are followed that might justify a restriction to “simpler” notions,
such as Markov punishments. An individual doesn’t fall of the wagon forever, but there
is still retribution for a deviation: a binge is followed by a further binge, the fear of
which acts as a deterrent. After that, the individual is back on the wagon. Second, there
is a sense in which these punishments are reasonably immune to renegotiation. While
the earlier, deviating self fears the low-value path, the self that inflicts the punishment
is actually treated rather well: he gets to enjoy a free binge, followed by the promise of
self-control being exercised in the future.

Finally, while optimal punishments are reminiscent of the carrot-and-stick property for
optimal penal codes in repeated games (Abreu (1988)), there is no reason why that
property should hold, in general, for games with state variables, of which our model is
an example. In this model, the particular structure arises from the hyperbolic factor β.
That parameter dictates that the most effective punishments are achieved by as much
excess consumption “as possible” in the very first period of the punishment. From the
point of view of the deviator, that first period lies in his future, and as such it is a bad
prospect (hence an effective punishment). From the point of view of the punisher, the
punishment might actually yield pleasing equilibrium payoffs. That is, the carrot-and-
stick feature is very much in the eyes of the deviator, and not in the eye of the punisher,
a distinction that is often not present in repeated games.

5.2. The Relationship Between Wealth and Self-Control. Given Proposition 3, we
can generate a bit more intuition on the issue of “jumps” in worst punishments. Let the
continuation {Y, V } support the lowest value at A. Let’s look at the no-deviation con-
dition (12) more closely. Neglecting some technical matters for the sake of exposition,
D(A) refers to the payoff obtained by deviating to another continuation asset d, followed

20We note again that reversion to the best continuation value occurs, provided that the asset level post-
binge is strictly higher than B, and provided that the best value selection is continuous at that asset level.
Otherwise the return is not necessarily to the best equilibrium continuation: recall the definition of H−.
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thereafter by the worst punishment starting from d with value L(d). In general, d > Y

for the reasons outlined in Proposition 3. If the no-deviation condition is binding,

u

(
A− Y )

α

)
+ βδV = u

(
A− d)

α

)
+ βδL(d).

Now increase A. Because d > Y , the strict concavity of utility forces the right hand
side of this constraint to increase more quickly than the left, holding constant both the
earlier equilibrium choice Y and the deviation d. That places pressure on the incentive
constraint. Indeed, depending on the shape of the equilibrium value correspondence,
both Y and V may have to be changed discretely, leading to an upward jump in L.21

The possibility that worst equilibrium values can abruptly rise with wealth leads to the
nihilistic suspicion that no general connection can be made between wealth and self-
control. Nevertheless, not one of the extensive numerical examples that we have studied
bears out this suspicion. Bernheim, Ray and Yeltekin (1999) show that either we are
in one of the two uniform cases (accumulation possible everywhere, or accumulation
impossible anywhere), or the situation looks quite generically like Figure 3. Initially,
there is asset decumulation in every equilibrium, followed by the crossing of a threshold
at which indefinite accumulation becomes possible. The non-uniform cases invariably
display a failure of self-control to begin with (at low asset levels), followed by the emer-
gence and maintenance of self-control after a certain asset threshold has been crossed.

The main proposition of this paper supports the numerical analysis:

PROPOSITION 4. In any non-uniform case:

(i) There is A1 > B such that every A ∈ [B,A1) exhibits a poverty trap.

(ii) There is A2 ≥ A1 such that every A ≥ A2 exhibits strong self-control.

The proposition states that in any situation where imperfect credit markets are sufficient
to disrupt uniformity, the lack of scale neutrality manifests itself in a particular way. At
low enough wealth levels, individuals are unable to exert self-control, and their actions
must generate a poverty trap. At high enough wealth levels, indefinite accumulation is
possible. There is, of course, no reason a priori why this must be the case. It is pos-
sible, for instance, that there a maximal asset level beyond which accumulation ceases

21Essentially, the constraint set is not continuous in A, leading to a failure of the maximum theorem.
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altogether, or that there are (infinitely) repeated intervals along which accumulation and
decumulation occur alternately. But the proposition rules out these possibilities.

This proposition provides partial vindication for the numerical analysis conducted in
Bernheim, Ray and Yeltekin (1999). One should compare this finding with the main
observation in Banerjee and Mullainathan (2010). They make the same point as we do
here and (numerically) in our earlier work. Self-control problems give rise to low as-
set traps. But the analysis is different. They study time-inconsistent preferences over
multiple goods in which rates of discount differ from one good to another. “Tempta-
tion goods” have higher discount rates attached to them. They are taken to be inferior
by assumption. This assumed non-hometheticity of preferences generates a tendency
to dissave when resources are limited. Our non-homotheticity manifests itself not via
preferences but through the imperfection of credit markets. As we’ve discussed, there is
no a priori presumption regarding the direction of that non-homotheticity.

In fact, the proposition fails to establish the existence of a unique asset threshold be-
yond which there is self-control, and below which there isn’t. A demonstration of this
stronger result is hindered in part by the possibility that worst punishments can move
in unexpected ways with the value of initial assets. In fact, we conjecture that a “single
crossing” is possibly not to be had, at least under the assumptions that we have made so
far. From this perspective, the fact that “ultimately” all multiple crossings must cease —
which is part of the assertion in the proposition — appears surprising, and the remainder
of this section is devoted to an informal exposition of the proof.
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5.3. An Informal Exposition of the Main Proposition. As we’ve mentioned on sev-
eral occasions, it is the presence of imperfect credit markets that destroys scale-neutrality
in our model. (The constant elasticity of preferences assures us that otherwise, the sit-
uation would be fully scale-neutral.) Yet variations of scale-neutrality survive. One
variation that is particularly germane to our argument is given in Observation 2 below.

To state it, define an asset level S ≥ B to be sustainable if there exists an equilibrium
that permits indefinite maintenance of S. It is important to appreciate that a sustain-
able asset level need not permit strict accumulation, and more subtly, an asset level that
permits strict accumulation need not be sustainable.22

OBSERVATION 2. Let S > B be a sustainable asset level. Define µ ≡ S/B > 1.
Then for any initial asset level A ≥ B, if continuation asset A′ can be supported as an
equilibrium choice, so can the continuation asset µA′ starting from µA.

Figure 4 illustrates the Observation. First think of S as a new lower bound on assets.
Then it is plain that any equilibrium action under the old lower bound B can be simply
scaled up using the ratio of S to B, which is µ. Indeed, if we replaced the word “sus-
tainable” by the phrase “physical minimum”, then the Observation would be trivial. We
would simply scale up all continuation actions from the old equilibrium specification to
the new one. However, S is not a physical minimum. Deviations to asset levels below S

are available, and there is no version of such a deviation in the earlier equilibrium that
can be rescaled (deviations below B are not allowed, after all). Nevertheless, the formal
proof of Observation 2 (see formal statement and proof as Lemma 7 in Section 9) shows
that given the concavity of the utility function, such deviations can be suitably deterred.
Thus, while S isn’t a physical lower bound, it permits us to carry out the same scaling
we would achieve if it were.

Let’s use Observation 2 to establish the first part of the proposition:

(i) There is A1 > B such that every A ∈ [B,A1) exhibits a poverty trap.

Recall that X(A) to be the largest continuation asset in the class of all equilibrium
outcomes at A. By Proposition 2, we will need to show that there is an asset level
A1 > B such that X(A) < A for all A ∈ (B,A1). Suppose, now, that the proposition is
false; then — relegating the impossibility of eternal wiggles back and forth to the more
22The continuation values created by continued accumulation might incentivize accumulation from A,
while a stationary path may not create enough incentives for self-sustenance.
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formal arguments — there is M > B such that X(A) ≥ A for all A ∈ [B,M ]. Figure 5
illustrates this scenario.

Because we are in a non-uniform case, there exists an asset levelA∗ at which self-control
fails, so by Proposition 2, X(A∗) < A∗. Let S be the supremum value of assets over
[B,A∗] for which X(A) ≥ A. Note that at S, it must be the case that X(S) equals S.23

Because X(S) = S, S is sustainable, though this needs a formal argument.24

Now Observation 2 kicks in to assert that X(A) must exceed A just to the right of S:
simply scale up the value X(A1) for some A1 close to B to the corresponding value
µX(A1) at µA1, where µ ≡ S/B. But that is a contradiction to the way we’ve defined
S, and shows that our initial presumption is false. Therefore X(A) < A for every A
close enough to B. That establishes the existence of an initial range of assets for which
a poverty trap is present, and so proves (i).

Next, we work on:

(ii) There is A2 ≥ A1 such that every A ≥ A2 exhibits strong self-control.

By nonuniformity, there is certainly some value of A for which X(A) > A. If the same
inequality continues to hold for all A′ > A, then by Proposition 2, strong self-control is
established, not just at A but at every asset level beyond it. So the case that we need to
worry about is one in which X(A∗) ≤ A∗ for some asset level still higher than A. See

23It can’t be strictly lower, for then X would be jumping down at S, and it can’t be strictly higher for then
we could find still higher asset levels for which X(A) ≥ A.
24After all, it isn’t a priori obvious that “stitching together” theX(A)s starting from any asset level forms
an equilibrium path. When X(A) = A, it does.
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Figure 6. Let S∗ be the supremum asset level on [B,A∗] for which X(A) > A; then as
in the exposition for part (i), X(S∗) = S∗ and S∗ is indeed sustainable.

By Observation 2, the function X(A) on [B, S∗] can be scaled and replicated as an
equilibrium choice over [S∗, S1], where S1 bears the same ratio to S∗ as S∗ does to B.25

Figure 6 shows this as the dotted line with domain [S∗, S1]. Because there is a poverty
trap near B, the line lies below the 450 line to the right of B and to the right of S∗.

That said, there is one feature near S∗ that cannot be replicated near B. Just to the right
of S∗, it is possible to implement even smaller continuation assets by dipping into the
zone to the left of S∗, and then accumulating upwards along X(A) back towards S∗.
Because these choices — shown by the solid line to the right of S∗ in Figure 6 — favor
current consumption over the future, they generate even lower equilibrium values, but
they earn high enough payoffs so that they can be successfully implemented as equilibria.
These lower values infiltrate up the region to the right, and do a better job of forestalling
deviations at even higher asset levels. In particular, for asset levels close to S1, the
incentive constraints are relaxed and larger values of continuation assets (the solid line
again) are sustainable. In particular, while S1 is a sustainable asset level, it also permits
accumulation: X(S1) > S1.

25The actual proof is considerably more complex at this point. Section 9 makes the argument formally
and adds an intuitive description. Briefly, we may need to rescale S∗ several times before we arrive at the
equivalent of what we call S1 here, which is shown in this exposition as a single rescaling of S∗.
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This argument creates a zone (possibly a small interval, but an interval nonetheless) just
above S1, call it (S1, S2), over which (a) X(A) > A, and (b) each S1 and S2 is sustain-
able. Part (a) follows from the fact that X(S1) > S1 and that X is nondecreasing. Part
(b) follows from the fact that assets just to the right of S1 were at least “almost sustain-
able” by virtue of the scaling argument of Observation 2, and now must be deemed fully
sustainable by virtue of the additional punishment properties that we’ve established in
the region of S∗.

Panel B of Figure 6 now focusses fully on this zone and its implications. The following
variation on Observation 2, stated and proved formally as Lemma 15 in Section 9, forms
our central argument:

OBSERVATION 3. Suppose that S1 and S2 are both sustainable, and that X(A) > A for
all A ∈ (S1, S2). Then there exists Â such that X(A) > A for all A > Â.

The proof of the lemma is illustrated in the second panel of Figure 6. Define µi = Si
B

for i = 1, 2. Then for all positive integers k larger than some threshold K, the intervals
(µk1S1, µ

k
2S2) and (µk+1

1 S1, µ
k+1
2 S2) must overlap. It is easy to see why: µk2S2 is just

µk+1
2 B while µk+1

1 S1 is µk+2
1 B, and for large k it must be that µk+1

2 exceeds µk+1
1 .

Once this is settled, we can generate any asset level A > µK1 S1 by simply choosing an
integer k ≥ K, an integer m between 0 and k, and A′ ∈ (S1, S2) so that

A = µm1 µ
k−m
2 A′.

But X(A′) > A′, so that repeated application of Observation 2 proves that X(A) > A.
That proves Observation 3.

But now the proof of the theorem is complete: by part (ii) of Proposition 2, ifX(A) > A

for all A sufficiently large, the required threshold A2 must exist.

6. SOME IMPLICATIONS OF THE THEORY

The main connection we emphasize in this paper is that there is a systematic link be-
tween credit limits and the ability to exercise self-control. The very same individual
(psychologically speaking) can behave quite differently when he is close to the min-
imum level to which his assets can go. He has little power to exercise control over
himself using internal rules, because the narrow margins below which he is constrained
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not to fall do not leave any room for suitable “punishments”. In contrast, when that
individual has sufficient wealth, he can use internal rules to carry out sustained accumu-
lation, provided, of course, that his proclivity for current consumption is not extremely
high.

It is evident that while our model is not scale-neutral, there is neutrality in a modified
sense. One such sense (another is given in Lemma 15) is that the ratio of initial asset A
to the lower bound B — fully determines an individual’s ability to exercise self-control.
We can rephrase all our observations in terms of this ratio. In particular, Proposition 4
can be interpreted as saying that there are two ratios µ1 and µ2, with 1 < µ1 ≤ µ2 <∞,
such that a poverty trap exists whenever A/B < µ1, while unlimited accumulation is
possible whenever A/B > µ2.

6.1. Ambiguous Effects of Changing Credit Limits. A first implication of Proposi-
tion 4 is that an improvement in the credit limit has ambiguous effects, depending on
initial assets A. Such an improvement lowers B. If that tips A/B over the threshold µ2,
sustained accumulation becomes possible where none was possible before. On the other
hand, if A/B remains below µ1 after the improvement, the individual will slide into an
even deeper poverty trap.

6.2. Asset-Specific Marginal Propensities to Consume. A second implication is that
the model naturally generates different marginal propensities to consume from income
flows and assets. This phenomenon is studied in Hatsopoulos, Krugman and Poterba
(1989), Thaler (1990) and Laibson (1997), though admittedly the empirical evidence for
it may be somewhat debatable.26 To see this, recall Section 2.1 and our interpretation
there of the lower bound as some function of permanent income, presumably one that is
related to the fraction of future labor income that can be seized in the event of a default.
That is, if Ft stands for financial assets at date t and y for income at every date, then At
is the present value of financial and labor assets:

At = Ft +
αy

α− 1
,

while
B =

σαy

α− 1

26Some of the effects may be driven by variations in the different stochastic processes governing various
sources of income.
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for some λ ∈ (0, 1). With this in mind, consider an increase in current financial assets
F . Then B is unchanged, so that A/B must rise. Our proposition suggests that this will
enhance self-control, so that accumulation is possible in a situation where previously it
wasn’t. In that case, the marginal propensity to consume out of an unforeseen change in
financial assets could be “low”.

In contrast, consider an equivalent jump in y, so that A rises by the same amount. Under
our specification, B/y is constant so that A/B must fall. By the ratio interpretation
of Proposition 4, self-control is damaged: the marginal propensity to consume from
an unforeseen change in permanent income will be high. Indeed, even if B is a more
complex increasing function of permanent income, it is only in the extreme case that
B is entirely unchanged when y increases, and it is in that case that the propensities to
consume out of the two asset classes will be the same. Otherwise, they will be different.

6.3. External Versus Internal Commitments. Our model is one that fully emphasizes
internal rules for achieving self-control. An important extension is one to the case in
which both internal and external commitments are available. The latter would include
bank deposit schemes in which there are constraints on withdrawal, or legal commit-
ments to make ongoing deposits (or both). Certainly, external commitments help when
internal commitment fails, and this suggests that the asset-poor would have a higher
demand for such arrangements.

Notice that external commitments effectively raise the value of the credit limit B, be-
cause they represent assets that cannot be drawn down. That suggests that unless all
savings are carried out in the form of locked commitment schemes, such arrangements
might damage other forms of “internal savings” as external assets accumulate. (“I have
a retirement account, I don’t need to save.”)

That suggests that a judicious policy that takes advantage of external commitments be-
low some asset threshold, coupled with a reliance on internal commitments when above
that threshold, might be optimal. For instance, one might permit the agent to choose
a particular savings targets, upon the attainment of which the lock-in is removed. To
make this argument precise, we need some uncertainty in preferences or in the external
environment which renders exclusive external arrangements infeasible.
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6.4. Who Wants External Commitments? Finally, we comment on the economic
characteristics of those individuals who might value external commitments. Clearly,
these are the individuals who are asset-poor relative to their credit limit. The asset-rich
would rather save on their own. The same observations would also be true of the income-
poor and the income-rich provided B is unchanged across the two categories. On the
other hand, these observations are reversed if B is a constant fraction of permanent in-
come. In that case, and controlling for financial assets, it is the income-rich who would
exhibit a greater desire for external commitment.

To be sure, the income-rich may also be asset-rich, so that the net effect is ambiguous.
Nevertheless, the theory informs an empirical specification which can, in principle, be
tested.

7. NUMERICAL ANALYSIS

8. CONCLUSIONS AND DIRECTIONS FOR FUTURE RESEARCH
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9. PROOFS

LEMMA 1. For any equilibrium continuation {x, V } at A,

V ≥
[
u

(
A− B

α

)
+ δL(B)

]
+

1− β
αβ

u′
(
A− B

α

)
(x−B)

≥ u

(
A− B

α

)
+

δ

1− δ
u

(
α− 1

α
B

)
.(15)

Proof. By (5) and the restriction that At ≥ B for any feasible asset choice at date t, we
have for any feasible consumption ct at date t,

u(ct) ≥ u(νB),

so that L(A) ≥ (1− δ)−1u(νB) > −∞.

Let P be the payoff associated with {x, V }. Then P = (1− β)u
(
A− x

α

)
+ βV and

(1− β)u
(
A− x

α

)
+ βV ≥ u

(
A− B

α

)
+ βδL(B),

because {x, V } is an equilibrium. Noting that u
(
A− x

α

)
≤ u

(
A− B

α

)
,

V ≥
[
u

(
A− B

α

)
+ δL(B)

]
+

1− β
β

[
u

(
A− B

α

)
− u

(
A− x

α

)]
≥

[
u

(
A− B

α

)
+ δL(B)

]
+

1− β
αβ

u′
(
A− B

α

)
(x−B).(16)

By applying (16) toA = B and the value L(B), or (if needed) a sequence of equilibrium
values in V(B) that converge down to L(B),

(17) L(B) ≥ u

(
B − B

α

)
+ δL(B).

Combining (16) and (17), the proof is complete.

Proof of Observation 1. This is an obvious consequence of Lemma 1.

Proof of Proposition 1. We claim that ifW is nonempty, has closed graph, and satisfies
(8), then it generates a correspondence with the same properties. LetW ′ be the corre-
spondence generated by W . We first prove that W ′ is nonempty-valued. Consider the
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function HW on [B,∞) defined by

HW(A) ≡ maxW(A)

for all A ≥ B. It is easy to see that HW is usc. It follows that the problem

max
x∈[0,A/α]

u
(
A− x

α

)
+ βδHW(x)

is well-defined and admits a solution x(A) for every A ≥ B. Define

W ≡ u

(
A− x(A)

α

)
+ δHW(x(A)).

Now observe thatW satisfies (9) — pick x = x(A) and V = HW(x(A)). It also satisfies
(10) — for each feasible alternative x′, take V ′ to be any element ofW(x′).

We next prove thatW ′ has closed graph. Take any {An,Wn} such that (i)Wn ∈ W ′(An)

for all n, and (ii) (An,Wn) → (A,W ) as n → ∞. Pick xn feasible for An and value
Vn ∈ W(xn) such that (9) is satisfied. Then for any limit point (x, V ) of (xn, Vn), we
have V ∈ W(x), x feasible for A, and (9) also satisfied.

To verify (10) for (A,W ), pick x′ feasible for A. Choose x′n feasible for An with x′n →
x′. {An,Wn} is an equilibrium continuation, so there is V ′n ∈ W(x′n) satisfying (10).
Let V ′ be any limit point of {V ′n}, then V ′ ∈ W(x′), and so (10) holds for (A,W ) at x′.

With this claim in hand, consider the iterated sequence {Vk}. Because V0 is nonempty,
has closed graph, and satisfies (8), so do all the Vk’s. Moreover, for each t ≥ 0, it is
obvious that for all A ≥ B,

Vk(A) ⊇ Vk+1(A)

Take infinite intersections of these nested compact sets (at each A) to argue that

V(A) ≡
∞⋂
t=0

Vk(A)

is nonempty and compact-valued for every A. Indeed, V has compact graph on any
compact interval [B,D],27 and therefore it has closed graph everywhere. By picking
V ∈ V(A) and taking limits of continuation assets, values and punishments as k →∞,
it is immediate that V generates itself and contains all other correspondences that do, so
it is our equilibrium correspondence.

27On any compact interval, the (restricted) graphs of the Vk’s are compact and their infinite intersection is
the graph of V on the same interval, which must then be compact.
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In the light of Proposition 1, define H(A) and L(A) to be the maximum and minimum
values of the equilibrium value correspondence V . Because the graph of V is closed, H
is usc and L is lsc. “Fill up” L(A) into a correspondence by defining

L(A) ≡ {L|L is a limit of L(An) for some sequence An → A}.

It is obvious that L has closed graph and coincides with L at all points of continuity of
the latter. Define L̂(A) ≡ maxL(A), and the “best deviation payoff” at A by

(18) D(A) = max
y∈[B,α(1−υ)A]

u
(
A− y

α

)
+ βδL̂(y).

Let d(A) denote a generic asset choice solving (18), and denote by d∗(A) the largest of
these. All these objects are well-defined.

Obviously, D(A) is increasing. D does not necessarily use worst punishments every-
where, but nonetheless a deviant can get payoff arbitrarily close to D(A). The interpre-
tation of D as “best deviation” is formalized in Lemma 2 below.

Each feasible asset sequence {At} (or path) generates a corresponding sequence of val-
ues {Vt}: Vt ≡

∑∞
s=t δ

s−tu
(
At − At+1

α

)
for every t ≥ 0.

LEMMA 2. A path {At} is an equilibrium if and only if

(19) u

(
At −

At+1

α

)
+ βδVt+1 ≥ D(At)

for all t, where {Vt} is the sequence of values generated by the path.

Proof. Sufficiency is a consequence of the one-shot deviation principle, given that D is
obviously the supremum of all payoffs that can be realized following a single deviation
and then an application of the worst equilibrium continuation value. To prove necessity,
note that if {At} is an equilibrium path, then for every t,

u

(
At −

At+1

α

)
+ βδVt+1 ≥ sup

y∈[B,α(1−υ)At]\At+1,L∈L(y)
u
(
At −

y

α

)
+ βδL

But Vt+1 ≥ L(At+1) for each t and L̂(y) = maxL(y), so

u

(
At −

At+1

α

)
+ βδVt+1 ≥ sup

y∈[B,α(1−υ)At]
u
(
At −

y

α

)
+ βδL̂(y) = D(At).

LEMMA 3. If d(A) solves (18), it is an equilibrium asset choice at A.
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Proof. Specify continuations at A by {d(A), L̂(A)} (noting that L̂(A) id an equilibrium
value atA, because V is uhc) and by the continuation values L(x) if any other asset level
is chosen, and apply (19) in Lemma 2.

Moreover, standard arguments prove

LEMMA 4. Let d(A) be a generic asset choice that solves (18). If A1 < A2, then
d(A1) ≤ d(A2). Moreover, a maximal solution d∗(A) is well-defined, and this choice is
nondecreasing and usc in A.

LEMMA 5. L(A) is increasing on [B,∞).

Proof. Let A′′ > A′ ≥ B. Consider the equilibrium that generates value L(A′′) starting
from A′′, with associated continuation {A′′1, V ′′}. By Lemma 2,

(20) u

(
A′′ − A′′1

α

)
+ βδV ′′ ≥ u

(
A′′ − x

α

)
+ βδL̂(x)

for x ∈ [B,α(1− ν)A′′]. (20) implies in particular that V ′′ > L̂(x) for x < A′′1, so

(21) L(A′′) = u

(
A′′ − A′′1

α

)
+ δV ′′ > u

(
A′′ − x

α

)
+ δL̂(x)

for all x < A′′1. Now construct an equilibrium from A′, as follows. The choice A′′1 (if
feasible) is followed by the value V ′′, while every other x ∈ [B,α(1− ν)A′] is followed
by L̂(x).28 Because u is strictly concave and A′ < A′′, it follows from (20) that

(22) u

(
A′ − A′′1

α

)
+ βδV ′′ > u

(
A′ − x

α

)
+ βδL̂(x)

for x ∈ (A′′1, α(1− ν)A′] (assuming this set is non-empty). Choose continuation {y, V }
at A′ to maximize payoff over these specifications. That continuation must be an equi-
librium, and by (22), y ≤ A′′1. If y < A′′1, then (21) implies

L(A′′) > u
(
A′′ − y

α

)
+ δL̂(A′1) > u

(
A′ − y

α

)
+ δL̂(y) ≥ L(A′),

and if y = A′′1, then again

L(A′′) = u

(
A′′ − A′′1

α

)
+ V ′′ > u

(
A′ − y

α

)
+ V ′′ ≥ L(A′).

So in both cases, L(A′′) > L(A′), as desired.

28Note that L̂(x) is indeed an equilibrium value at x because V has closed graph.



32

Lemma 5 makes it easy to visualize the incentive constraint embodied in D(A). At
any x, L̂(x) is just the limit of L(x′) as x′ ↓ x. The following lemma is an immediate
consequence of the analysis so far:

LEMMA 6. L̂(A) is increasing and usc (and therefore right-continuous).

It will be convenient to define the maintenance value of an asset level A by

V s(A) ≡ 1

1− δ
u

(
α− 1

α
A

)
,

and the maintenance payoff by

P s(A) ≡
[
1 +

βδ

1− δ

]
u

(
α− 1

α
A

)
.

Say that an asset level S is sustainable if there is a stationary equilibrium path from S,
or equivalently (by Lemma 2) if P s(A) ≥ D(A).

LEMMA 7 (Observation 2 in main text). (a) Let S > B be sustainable. Define µ = S/B.
Then if {A∗t} is an equilibrium path from A0, so is {µA∗t} from µA0.

(b) For all t with µA∗t > B and for every A < S,

u

(
µA∗t −

µA∗t+1

α

)
+ β

∞∑
s=t+1

δs−tu

(
µA∗s −

µA∗s+1

α

)
> u

(
µA∗t −

A

α

)
+ βδL̂(A).

Proof. Part (a). Let policy φ sustain {A∗t} from A0. Define a new policy ψ:

(i) For any ht = (A0 . . . At) with As ≥ S for s = 0, . . . , t, let ψ(ht) = µφ
(
ht
µ

)
.

(ii) For ht with As < S for some smallest k ≤ t, define h′t−k = (Ak . . . At). Let
ψ(ht) = φ`(h

′
t−k), where φ` is the equilibrium policy with value L(Ak) at Ak.

For any history ht with As ≥ S for s = 1, . . . , t, the asset sequence generated through
subsequent application of ψ is the same as the sequence generated through repeated
application of φ from ht

µ
, but scaled up by the factor µ. It follows that

(23) Pψ(ht) = µ1−σPφ

(
ht
µ

)
and Vψ(ht) = µ1−σVφ

(
ht
µ

)
.

We now show that ψ is an equilibrium.
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First, consider any ht such that Ak < S at some first k ≤ t. Then as of period k the
policy function ψ shifts to the equilibrium with value L(Ak). So ψ(ht) is optimal given
the continuation policy function.

Next consider any ht such that As ≥ S for all s ≤ t. Consider, first, any deviation to
A ≥ S. Note that ht/µ is a feasible history under the equilibrium φ, while the deviation
to (A/µ) ≥ (S/µ) = B is also feasible. It follows that

Pφ

(
ht
µ

)
≥ u

(
At
µ
− A

µα

)
+ βδVφ

(
ht
µ

)
.

Multiplying through by µ1−σ and using (23), we see that

(24) Pψ(ht) ≥ u

(
At −

A

α

)
+ βδVψ(ht.A),

which shows that no deviation to A ≥ S can be profitable.

Now consider a deviation to A < S. Because S is sustainable,

(25) P s(S) ≥ u

(
S − A

α

)
+ βδL̂(A).

At the same time, (24) applied to A = S implies

(26) Pψ(ht) ≥ u

(
At −

S

α

)
+ βδVψ(ht.S).

Using (23) along with L(B) ≥ V s(B) (see Observation 1), (26) becomes

Pψ(ht) ≥ u

(
At −

S

α

)
+ βδµ1−σVφ

(
ht
µ
.B

)
≥ u

(
At −

S

α

)
+ βδµ1−σL(B)

≥ u

(
At −

S

α

)
+ βδµ1−σV s(B)

= u

(
At −

S

α

)
+ βδV s(S)

=

[
u

(
At −

S

α

)
− u

(
S

(
1− 1

α

))]
+ P s(S).(27)
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Combining (25) and (27) and using the concavity of u (along with S > A),

Pψ(ht) ≥
[
u

(
At −

S

α

)
− u

(
S

(
1− 1

α

))]
+ u

(
S − A

α

)
+ βδL̂(A)

=

[
u

(
At −

S

α

)
− u

(
S − S

α

)]
−
[
u

(
At −

A

α

)
− u

(
S − A

α

)]
+u

(
At −

A

α

)
+ βδL̂(A)

≥ u

(
At −

A

α

)
+ βδL̂(A)

= u

(
At −

A

α

)
+ βδVψ(ht.A),(28)

where the second inequality follows from the concavity of u and the fact that A < S. It
follows that the deviation A is unprofitable, so that ψ is an equilibrium.

Part (b). The second inequality in (28) holds strictly when At > S and A < S, because
u is strictly concave. Apply this observation to the on-path history in whichAt = µA∗t >

S by assumption.

LEMMA 8. For any asset level A and any path {At} with At ≤ A for all t ≥ 0,

(29) V s(A)−
∞∑
t=0

δtu

(
At −

At+1

α

)
≥ u′

(
α− 1

α
A

)(
δ − 1

α

)
(A− A1) ≥ 0.

Proof. Let ∆ stand for the left hand side of (29); then

∆ =
∞∑
t=0

δt
[
u

(
α− 1

α
A

)
− u

(
At −

At+1

α

)]

≥ u′
(
α− 1

α
A

) ∞∑
t=0

δt
[
A− A

α
− At +

At+1

α

]

= u′
(
α− 1

α
A

) ∞∑
t=0

δt
[
(A− At)−

A− At+1

α

]

= u′
(
α− 1

α
A

)[
(A− A0) +

(
δ − 1

α

) ∞∑
t=0

δt (A− At+1)

]

≥ u′
(
α− 1

α
A

)(
δ − 1

α

)
(A− A1) ≥ 0,
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where the first inequality uses the concavity of u and the last two use δα > 1.

Define X(A) and Y (A) to be the largest and smallest equilibrium asset choices respec-
tively at A.

LEMMA 9. X (A) and Y (A) are well-defined and non-decreasing, and X is usc.

Proof. It is easy to see that X(A) (resp. Y (A)) is the largest (resp. smallest) value of
A′ ∈ [B,α(1− υ)A] satisfying

(30) u

(
A− A′

α

)
+ βδH(A′) ≥ D(A) ≥ u

(
A− y

α

)
+ βδL̂(y)

for all y ∈ [B,α(1 − υ)A]. X(A) and Y (A) are well-defined because H is usc. To
show that X is non-decreasing, pick A1 < A2. If u (A2 −X(A1)/α) +βδH(X(A1)) ≥
D(A2), then we are done. Otherwise there is x′ ∈ [B,α(1− υ)A2] such that

(31) u

(
A2 −

X(A1)

α

)
+ βδH(X(A1)) < u

(
A2 −

x′

α

)
+ βδL̂(x′),

which implies

(32) u

(
A2 −

x′

α

)
− u

(
A2 −

X(A1)

α

)
> βδ

[
H(X(A1))− L̂(x′)

]
There are two cases to consider: (i) x′ ≤ X(A1), and (ii) x′ > X(A1). In case (i), x′ is
feasible under A1, so that

(33) u

(
A1 −

x′

α

)
− u

(
A1 −

X(A1)

α

)
≤ βδ

[
H(X(A1))− L̂(x′)

]
But (32) and (33) together contradict the concavity of u.

In case (ii), we combine (30) and (31) to see that

u

(
A2 −

x′

α

)
+ βδL̂(x′) > u

(
A2 −

X(A1)

α

)
+ βδH(X(A1))(34)

≥ u(A2 − y) + βδL̂(y)

for all y ≤ X(A1). We now construct an equilibrium starting from A2 as follows:
any choice A < X(A1) is followed by the continuation equilibrium generating L(A),
and any choice A ≥ X(A1) is followed by the continuation equilibrium generating
H(A). Because H is usc, there exists some z∗ that maximizes u

(
A2 − z

α

)
+ βδH(z)

on [X(A1), α(1 − υ)A2]; in light of (34) and the fact that u
(
A2 − x

α

)
+ βδH(x) ≥
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u
(
A2 − x

α

)
+ βδL(x), all choices A < X(A1) are strictly inferior to z∗. Thus z∗ is an

equilibrium choice at A2, so that X(A2) ≥ z∗ ≥ X(A1).

To show that Y (A) is non-decreasing, pick A1 < A2. If Y (A2) ≥ α[1 − υ]A1, we’re
done, so suppose that Y (A2) < α[1 − υ]A1. Construct an equilibrium from A1 as
follows: assign the continuation {A′, H(A′)}, where A′ solves

max
A∈[B,Y (A2)]

u

(
A1 −

A

α

)
+ βδH(A)

(Because H is usc, a solution exists.) For any other A ∈ (Y (A2), α[1 − υ]A1], assign
the value L(A); for A ∈ [B, Y (A2)], assign H(A). We claim that A′ maximizes payoff
over all these specifications. It certainly does so over asset choices in [B, Y (A2)], by
construction. For A > Y (A2),

u

(
A2 −

Y (A2)

α

)
+ βδH(Y (A2)) ≥ u

(
A2 −

A

α

)
+ βδL̂(A),

so by the concavity of u,

u

(
A1 −

Y (A2)

α

)
+ βδH(Y (A2)) > u

(
A1 −

A

α

)
+ βδL̂(A),

which proves the claim. Because A′ ≤ Y (A2), it follows that Y (A1) ≤ Y (A2).

Finally, we show that X is usc. For any A∗ ≥ B, limA↑A∗ X(A) ≤ X(A∗) be-
cause X(A) is nondecreasing. Now consider any decreasing sequence Ak ↓ A∗, and
let X∗ denote the (well-defined) limit of X(Ak). For each k, u

(
Ak −X(Ak)/α

)
+

βδH(X(Ak)) ≥ D(Ak). BecauseH is usc andD(A) is nondecreasing, u (A∗ −X∗/a)+

βδH(X∗) ≥ limk→∞D(Ak) ≥ D(A∗). That implies X(A∗) ≥ X∗ = limA↓A∗ X(A).
(In fact, because X(A) is non-decreasing, X(A∗) = limA↓A∗ X(A).)

LEMMA 10. If X(A) = A, then A is sustainable.

Proof. Let {At} be an equilibrium path from A with A1 = A. Then

u

(
α− 1

α
A

)
+ βδV1 ≥ D(A).

by Lemmas 2 and 9. By Lemma 8, V1 ≤ (1−δ)−1u
(
α−1
α
A
)
. Using this in the inequality

above, we see that Pm(A) ≥ D(A), so that A is sustainable.

LEMMA 11. In the nonuniform case, βδ(α− 1)/(1− δ) < 1.
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Proof. We claim that if βδ(α − 1)/(1 − δ) ≥ 1, then there exists a linear Markov
equilibrium policy function φ(A) = kA with k > 1, which implies uniformity.

To this end, assume that all “future selves” employ the policy function φ(A) = kA with
k ∈ [1, α] for all A ≥ B. The individual’s current problem is to solve

max
x∈[B,α(1−υ)A]

1

1− σ

[(
A− x

α

)1−σ
+ βδQx1−σ

]
where

(35) Q ≡ (α− k)1−σ

α1−σ (1− δk1−σ)

The corresponding necessary and sufficient first-order condition is

1

α

(
A− x

α

)−σ
= βδQx−σ.

After some manipulation, we obtain

(36)
A

x
=

1

α
+

(
1

αβδQ

)1/σ

≡ 1

k∗

Note that x = k∗A. Accordingly, the policy function is an equilibrium if k∗ = k.
Substituting (35) into (36) and rearranging yields

(37) kσ = αβδ + (1− β) δk

Define Λ(k) ≡ k1−σ and Φ(k) = αβδ + (1− β) δk. Notice that Λ(1) ≤ Φ(1) (given
that βδ(α − 1)/(1 − δ) ≥ 1), and Λ(α) > Φ(α) (given the transversality condition
δα1−σ < 1). By continuity, it follows that there exists a solution on the interval [1, α),
which establishes the claim and hence the lemma.

LEMMA 12. Under nonuniformity, the problem

max
x∈[0,α(1−υ)A]

[
u
(
A− x

α

)
+ βδV s(x)

]
.

has a unique, continuous solution x(A) with x(A) = ΓA, where 0 < Γ < 1. Moreover,
the maximand is strictly decreasing in x for all x ≥ x(A).

Proof. It is obvious that the maximand is a continuous, strictly concave function, There-
fore it has a unique, continuous solution x(A) for each A. Moreover, by strict concavity,
the maximand must strictly decline in x for all x ≥ x(A).
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Define ξ = βδ(α− 1)/(1− δ). By nonuniformity and Lemma 11, we know that ξ < 1.
Routine computation reveals that x(A) = ΓA, where

Γ =
α

1 + ξ−
1
σ (α− 1)

which (given σ > 0 and ξ < 1) implies Γ < 1.

LEMMA 13. For any A0 ≥ B, maximize
∑∞

t=0 δ
tu
(
At − At+1

α

)
, subject to At+1 ∈

[B,α(1 − υ)At], and At+1 ≤ X(At) for all t ≥ 0. Then a solution exists, and any
solution path {A∗t} is also an equilibrium path starting from A0.

Proof. u is continuous andX(At) is usc (Lemma 9), so a solution {A∗t} (with associated
values {V ∗t }) exists. Consider an equilibrium path from date t, call it {Aτ}, sustaining
X(A∗t ) at A∗t and providing continuation value H(X(A∗t )) thereafter. This path neces-
sarily satisfies Aτ+1 ≤ X(Aτ ) for all τ ≥ t, so the definition of {A∗t} implies that

(38) u

(
A∗t −

A∗t+1

α

)
+ δV ∗t+1 ≥ u

(
A∗t −

X(A∗t )

α

)
+ δH(X(A∗t ))

Also, because A∗t+1 ≤ X(A∗t ) and β < 1, we have

(39)
(

1

β
− 1

)
u

(
A∗t −

A∗t+1

α

)
≥
(

1

β
− 1

)
u

(
A∗t −

X(A∗t )

α

)
Adding (38) to (39) and multiplying through by β, we obtain

(40) u

(
A∗t −

A∗t+1

α

)
+ βδV ∗t+1 ≥ u

(
A∗t −

X(A∗t )

α

)
+ βδH(X(A∗t ))

Now, {X(A∗t ), H(X(A∗t )} is supportable at A∗t , so

(41) u

(
A∗t −

X(A∗t )

α

)
+ βδH(X(A∗t )) ≥ D (A∗t )

Combining (40) and (41), we obtain

u

(
A∗t −

A∗t+1

α

)
+ δV ∗t+1 ≥ D (A∗t )

for all t ≥ 0, which shows that {At} is an equilibrium path.

LEMMA 14. Suppose that for some A∗ > 0, X(A) > A for all A ≥ A∗. Then starting
from any A ≥ A∗, there is an equilibrium path with monotonic and unbounded accu-
mulation, so that strong self-control is possible. Moreover, some such equilibrium path
maximizes value among all equilibrium paths from A.
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Proof. We first claim that for any A > A∗ with limA′↑AX(A′) = A, there is ε > 0 with

(42) X(A′) = A for A′ ∈ (A− ε, A).

Suppose on the contrary that there is A > A∗ and η > 0 such that A′ < X(A′) < A for
all A′ ∈ (A− η, A). Because X(A) > A, Lemma 13 and δα > 1 together imply

(43) H(A) > V s(A) + γ

for some γ > 0.29 Consider any equilibrium continuation {X(A′), V1} from A′ ∈ (A−
η, A). Because A′′ < X(A

′′
) < A for all A′′ in that interval, A′t < A for the resulting

equilibrium path. It follows from Lemma 8 that V s(A) ≥ V1. Combining this inequality
with (43) and noting that X(A′)→ A as A′ → A,

u

(
A′ − A

α

)
+ βδH(A) > u

(
A′ − X(A′)

α

)
+ βδV1 ≥ D(A′)

for all A′ < A but close to A. So all such A′ possess an equilibrium continuation of
{A,H(A)}, which contradicts X(A′) < A′, and establishes the claim.

We now complete the proof by claiming that any path {At} from A ≥ A∗ which solves
the problem of Lemma 13 involves monotonic and unbounded accumulation. Suppose
this assertion is false. Then at least one of the following must be true:

(i) there exists some date τ such that Aτ ≥ Aτ+1 ≤ Aτ+2, and/or

(ii) the sequence {At} converges to some finite limit.

Let {ct} be the consumption sequence generated by {At}. In case (i), cτ ≥ cτ+1.
Recalling that δα > 1, we therefore have

(44) u′(cτ ) < δαu′(cτ+1).

Moreover, because X(Aτ ) > Aτ and Aτ ≥ Aτ+1, we have

(45) Aτ+1 < X(Aτ ).

In case (ii), there exists T such that, for τ > T1, (44) again holds because cτ and cτ+1

are close. As far as (45) is concerned, there are two subcases to consider:

(a) There is τ > T with Aτ+1 ≤ Aτ . Here, (45) holds because X(Aτ ) > Aτ ≥ Aτ+1.

29If δα > 1 and X(A) > A, then the problem of Lemma 13 isn’t solved by the stationary path from A.
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(b) For t > T , At is strictly increasing with limit Ā < ∞. If limt→∞X(At) > Ā, (45)
plainly holds for some τ sufficiently large. Otherwise limt→∞X(At) = Ā. But in this
case, we know from the first claim above that for some τ , X(Aτ ) = Ā > Aτ+1, so that
(45) holds yet again for some τ sufficiently large.

In short, (44) and (45) always hold (for some τ ). Now alter the path {At} by increasing
the period-τ asset level from Aτ+1 to Aτ+1 + η, leaving asset levels unchanged for all
other periods. Because X(A) is non-decreasing, Aτ+2 ≤ X(Aτ+1 + η), and for small
η we have Aτ+1 + η < X(Aτ ) by (45); thus, the new path is feasible and also satisfies
the constraints that define the value-maximizing path {At}. Taking the derivative of
period-τ value with respect to η,

dVτ
dη

= δτ
[
−u′(cτ )

1

α
+ δu′(cτ+1)

]
> 0,

where the inequality holds as a consequence of (44). This contradicts the definition of
{At} as a path that solves the problem in Lemma 13, and so establishes the lemma.

Proof of Proposition 2. Part (i) is obvious. “Only if” in part (ii) is also obvious, while
“if” follows from Lemma 14. Part (iii) is a consequence of the fact that X is usc, while
part (iv) once again is obvious.

Proof of Proposition 4, part (i). First suppose that there is ε > 0 with X(A) ≥ A on
[B,B + ε]. By nonuniformity, X(A′) < A′ for some A′. X is nondecreasing and usc,
so X(S) = S for some S > B, with X(A′) < A′ for some A′ ∈ (S, S + ε′), for every
ε′ > 0.30 By Lemma 10, S is sustainable. Define µ ≡ S/B. By Lemma 7 (a), µX(A′/µ)

is an equilibrium choice for every A′ ∈ [S, S + µε]. But then X(A′) ≥ µX(A′/µ) ≥ A′

for all such A′, a contradiction.

In particular, X(B) = 0, and for all ε > 0, there exists Aε ∈ (B,B + ε) such that
X(Aε) < Aε. But if the result is false, there is also A′ε ∈ (B,B + ε) with X(A′ε) ≥ A′ε.
BecauseX(A) is nondecreasing, these observations imply the existence of Sε ∈ (B,B+

ε) such that X(Sε) = Sε. By Lemma 10, Sε is sustainable for all ε > 0. But

D(Sε) ≥ u

(
Sε −

B

α

)
+ βδL(B) ≥ u

(
Sε −

B

α

)
+ βδV s(B) > Pm(Sε)

for ε sufficiently small, by Lemma 12. This is a contradiction.

30Take S to be the infimum of all A with X(A) < A.



41

LEMMA 15 (Observation 3 in main text). Suppose that asset levels S1 and S2, with
S1 < S2, are both sustainable, and that X(A) > A for all A ∈ (S1, S2). Then there
exists A∗ ≥ B such that X(A) > A for all A > A∗.

Proof. Let µi ≡ Si/B for i = 1, 2; then µ1 < µ2. We claim that there is A∗ ≥ B such
that for all A > A∗, there are Ã ∈ (S1, S2) and integers (m,n) ≥ 0 with A = µn1µ

m
2 Ã.

We first show that there is A∗ such that for all A > A∗, A ∈ (µk1S1, µ
k
2S2) for some k.

Because µ1 < µ2, there is an integer ` with µk+2
1 < µk+1

2 for all k ≥ `. For all such
k, (µk1S1, µ

k
2S2) = (µk1S1, µ

k+1
2 B) overlaps with (µk+1

1 S1, µ
k+1
2 S2) = (µk+2

1 B, µk+1
2 S2).

So ∪∞k=`(µk1S1, µ
k
2S2) =

(
µ`1S1,∞

)
. Take A∗ to be any number greater than µ`1S1.

Next we show that for each integer k ≥ 1 and A ∈ (µk1S1, µ
k
2S2), there is Ã ∈ (S1, S2)

along with an integer m ∈ {0, . . . , k} such that A = µm1 µ
k−m
2 Ã. Divide the inter-

val (µk1S1, µ
k
2S2) (which is the same as the interval (µk+1

1 B, µk+1
2 B)) into a sequence

of semi-open sub-intervals (preceded by an open interval) that coincide at their end-
points: (µk+1

1 B, µk1µ2B), [µk1µ2B, µ
k−1
1 µ2

2B), . . . , [µ1µ
k
2B, µ

k+1
2 B). A must lie in

one of these intervals; call it [µm+1
1 µk−m2 B, µm1 µ

k−m+1
2 B), which we can rewrite as

[µm1 µ
k−m
2 S1, µ

m
1 µ

k−m
2 S2). (The left edge is open if it is the first interval.) Thus, set-

ting Ã = Aµ−m1 µm−k2 , we have Ã ∈ (S1, S2) and A = µm1 µ
k−m
2 Ã, as desired.

To complete the proof, pick any A > A∗ along with some Ã ∈ (S1, S2) and m ∈
{0, . . . , k} for which A = µm1 µ

k−m
2 Ã. By repeated application of Lemma 7 (a), we see

that X(A) ≥ µm1 µ
k−m
2 X(Ã); noting that X(Ã) > Ã, we have X(A) > A.

Let us refer to the assertion of Proposition 4, part (ii), as the Conclusion. Lemma 15 (to-
gether with Lemma 14) implies the Conclusion. Via Lemma 15, several other situations
also imply the Conclusion. Define E(A) ≡ P s(A)−D(A).

LEMMA 16. E(A) > 0 for some A > B implies the Conclusion.

Proof. Because u is continuous andD is increasing, there is an interval [S1, S2] such that
E(A′) > 0 for all A′ ∈ [S1, S2] (e.g., take S2 = A and S1 to be an asset level slightly
below S2). Clearly, S1 and S2 are both sustainable (indeed, every A ∈ [S1, S2] is).

For each A ∈ [S1, S2), define xA as the largest value in [S1, S2] satisfying

(46) u
(
A− xA

α

)
+ βδV s(xA).
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Because E(A) > 0, we have xA > A. Moreover, because E(xA) > 0, we know that xA
is sustainable. So (46) and Lemma 2 imply the existence of an equilibrium starting from
A in which assets increase to xA immediately and then remain at xA forever. It follows
that X(A) ≥ xA > A for all A ∈ (S1, S2). Therefore the condition of Lemma 15 is
satisfied: there are assets S1 and S2 with S1 < S2, both sustainable, with X(A′) > A′

for all A′ ∈ (S1, S2). The Conclusion follows.

Say that a sustainable asset S is isolated if there is an interval around S with no other
sustainable asset in that interval.

LEMMA 17. If S is sustainable and not isolated, and there exists A∗ > S with X(A∗) >

A∗, then the Conclusion is true.

Proof. There is A∗ > S with X(A∗) > 0. If X(A′) > A′ for all A′ ≥ A∗, the Con-
clusion follows (Lemma 14). Otherwise, X(A′) ≤ A′ for some A′ > A∗. Because X
is nondecreasing, there is S∗ > A∗ such that X(S∗) = S∗, and X(A′) > A′ for all
A′ ∈ [A∗, S∗). By Lemma 10, S∗ is sustainable.

Suppose S is sustainable but not isolated. Then for every ε > 0, there is sustainable S ′

with |S ′ − S| < ε. Let µ ≡ S/B and µ′ ≡ S ′/B. By Lemma 7 (a), S1 ≡ µS∗ and
S2 ≡ µ′S∗ are sustainable. Remember thatX(A′) > A′ for all A′ ∈ [A∗, S∗). Using this
information, it is easy to see that if S and S ′ are close enough (say S < S ′ without loss
of generality), X(A) > A for all A ∈ (S1, S2). But now all the conditions of Lemma 15
are met, so that the Conclusion follows.

Part (i) of the proposition, along with Lemmas 14 and 15, allow us to piece together
the following construction, on the provisional assumption that the Conclusion is false.
X(A) starts out below A near B, and then there is an infimum value — call it A∗ — for
all A with X(A) > A. There must be an interval to the right of A∗ with X(A) > A;
if not, sustainable stocks cannot all be isolated, so that the Conclusion would follow
from Lemma 17.31 Moreover, Lemma 14 tells us that if the Conclusion is false, there
is S∗ < ∞, defined as the supremum of all asset levels S greater than A∗ such that
X(A) > A for all A ∈ (A∗, S). It is easy to see that X(S∗) = S∗, so that in particular,

31By definition of A∗, there is {A′n} converging down to A∗ with X(A′n) > A′n. If the assertion in the
text is false, there is {A′′n} also converging down to A∗ along which X(A′′n) ≤ A′n. But then, using the
fact that X is nondecreasing, there must be a third sequence along which equality holds, which brings us
back to the case in which there are non-isolated sustainable assets.
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S∗ is sustainable. (We also note that X(A∗) > A∗, otherwise the Conclusion would be
implied by setting S1 = A∗ and S2 = S∗, and applying Lemma 15.)

In the rest of the proof, then, we make the assumption (by way of ultimate contradiction)
that the Conclusion is false. In particular, the construction above will be assumed to be
valid. Also note that because many of the steps to follow presume that the Conclusion
is false, they cannot all be regarded as relationships that truly hold in the model.

LEMMA 18. There are numbers ε > 0, ζ > 0 and η > 0 such that for every A ∈
[S∗, S∗ + ε], there is an equilibrium which involves first-period continuation asset A1 ≤
S∗ − ζ , and has value V (A) ≤ V s(S∗)− η.

Proof. By Lemma 12, there are ζ > 0 and ε1 > 0 such that for every A ∈ [S∗, S∗ + ε1],

(47) u

(
A− S∗ − ζ

α

)
+ βδV s(S∗ − ζ) ≥ u

(
A− A1

α

)
+ βδV s(A1)

whenever A1 ≥ S∗, while at the same time (using the definition of S∗),

(48) X(A′′) > A′′ for all A′′ ∈ [S∗ − ζ, S∗).

By part (i) of this proposition, there is A1 > B such that every equilibrium from A ∈
[B,A1) monotonically descends to B. By Lemma 7 (a), there must be a corresponding
equilibrium which monotonically descends fromA to S∗ for everyA ∈ [S∗, µA1), where
µ = S∗/B. Define ε2 ≡ min{ε1, µA1 − S∗}.

Using the first inequality in (29) of Lemma 8,

V s(S∗) ≥
∞∑
t=0

δtu

(
At −

At+1

α

)
+ u′

(
α− 1

α
S∗
)(

δ − 1

α

)
ζ

for any path {At} with the property that At ≤ S∗ for all t ≥ 0, and A1 ≤ S∗ − ζ . But
then there exists η > 0 and ε3 > 0 such that

(49) V s(S∗) ≥
∞∑
t=0

δtu

(
At −

At+1

α

)
+ η

for any path {At} with At ≤ S∗ for all t ≥ 1, A1 ≤ S∗ − ζ , and A0 ≤ S∗ + ε3. Define
ε ≡ min{ε2, ε3}.

Pick any A ∈ [S∗, S∗ + ε], and consider any “descending equilibrium” as described in
the previous paragraph, with payoff P (A). Suppose that it has continuation (A1, V1).
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By Lemma 8, we know that V1 ≤ V s(A1), so

(50) u

(
A− A1

α

)
+ βδV s(A1) ≥ P (A).

Combining (47) and (50), we must conclude that

(51) u

(
A− S∗ − ζ

α

)
+ βδV s(S∗ − ζ) ≥ P (A).

Now observe that (48), coupled with Lemma 14, implies that H(S∗− ζ) ≥ V s(S∗− ζ).
Using this information in (51), we must conclude that

(52) u

(
A− S∗ − ζ

α

)
+ βδH(S∗ − ζ) ≥ P (A).

It follows that the continuation {S∗−ζ,H(S∗−ζ)} is an equilibrium specification from
every A ∈ [S∗, S∗ + ε].

To complete the proof, note that any path {At} associated with this equilibrium contin-
uation satisfies At ≤ S∗ for all t ≥ 1,32 A1 ≤ S∗ − ζ , and A0 ≤ S∗ + ε ≤ S∗ + ε3.
Therefore (49) applies.

LEMMA 19. Suppose that the Conclusion is false. Then

(a) d∗(S∗) < S∗, and d∗(A) < A for every A ∈ (B, S∗) with X(A) 6= A, and

(b) d(A) ≤ A for all A ∈ [B, S∗].

Proof. Part (a). First we show that d∗(S∗) < S∗. Suppose not; then, since X(S∗) = S∗,
it follows from Lemma 3 that d(S∗) = S∗. By Lemma 18,

L̂(S∗) < V s(S∗).

Invoking (18) along with d(S∗) = S∗, we must conclude that

D(S∗) = u

(
α− 1

α
S∗
)

+ βδL̂(S∗) < u

(
α− 1

α
S∗
)

+ βδV s(S∗) = P s(S∗),

or that E(S∗) = P s(S∗) − D(S∗) > 0. By Lemma 16, the Conclusion must follow, a
contradiction.

Next, consider any asset A with X(A) < A. By Lemma 3, d∗(A) ≤ X(A) < A.

32This follows from X(S∗) = S∗ and the fact that X is nondecreasing.
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Finally, consider A ∈ (B, S∗) with X(A) > A. Suppose that d∗(A) ≥ A for some
such A. Then, given that d∗ is nondecreasing and usc, and that d(S∗) < S∗, there is a
maximal asset S ∈ (B, S∗) with d∗(S) ≥ S and X(S) > S. In fact, d∗(S) = S. We
claim that

(53) L̂(S) ≤ V s(S).

By Lemma 5, L is increasing. So there is a sequence {An} with An ↓ S and L(An) =

L̂(An), with this common value converging to L̂(S). For each n, consider an equilibrium
with the lowest value V (An) among those that implement Y (An).33 Then

(54) (1− β)u

(
An −

Y (An)

α

)
+ βV (An) ≥ D(An),

for all n. If strict inequality holds along a subsequence of n, then it’s easy to see that
V (An) = u(An − B/α) + δL(B) along that subsequence,34 but V (An) bounds L(An)

above, so that passing to the limit, (53) must certainly hold by Lemma 1. Therefore we
may presume that for all n,

(55) (1− β)u

(
An −

Y (An)

α

)
+ βV (An) = D(An).

But in turn, we have that

(56) D(An) = u

(
An −

d∗(An)

α

)
+ βδL̂(d∗(An)).

Combining (55) and (56), we see that for every n,

(57) (1− β)u

(
An −

Y (An)

α

)
+ βV (An) = u

(
An −

d∗(An)

α

)
+ βδL̂(d∗(An)).

Now we pass to the limit in (57). Recall that L̂(d∗(An)) converges to L̂(S) (as does
L(An)) and because d∗ is usc and An ≥ S for all n, d∗(An) converges to d∗(S) = S.
Letting (Y, V ) denote any limit point of {Y (An), V (An)}, we therefore have

(58) (1− β)u

(
S − Y

α

)
+ βV = u

(
α− 1

α
S

)
+ βδL̂(S).

33One can actually show that this value equals L(An), but we do not use this fact anywhere in the proofs.
34We know that Y (An) can be implemented by the continuation value H(Y (An)), satisfying (30). If
strict inequality holds in (30), reduce continuation assets, always using H as the continuation, and sliding
down the vertical portion of H at any point of discontinuity. (Public randomization allows us to do this.)
Note that payoffs and continuation values change continuously as we do this. Eventually we come to
Y (An) = B with continuation value L(B).
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Transposing terms in (58), we establish (53) by noting that

β(1− δ)L̂(S) ≤ βV − βδL̂(S)

= u

(
α− 1

α
S

)
− (1− β)u

(
S − Y

α

)
≤ u

(
α− 1

α
S

)
− (1− β)u

(
α− 1

α
S

)
= βu

(
α− 1

α
S

)
,(59)

where the first inequality uses V (An) ≥ L(An) for all n, so that V ≥ L̂(S), and the
second inequality uses d∗(An) ≥ Y (An) for all n, and d∗(An)→ S, so that S ≥ Y .

With (53) in hand, we must conclude that

(60) u

(
α− 1

α
S

)
+

βδ

1− δ
u

(
α− 1

α
S

)
≥ u

(
α− 1

α
S

)
+ βδL̂(S) = D(S),

which means that S is sustainable. But X(A) > A for all A ∈ (S, S∗), so the conditions
of Lemma 15 are satisfied. This means that the Conclusion holds, a contradiction.

Part (b). If false, then d∗(A) > A for some A ∈ [B, S∗]. By part (a), A < S∗. Because
d∗ is nondecreasing (Lemma 4), d(A′) ≥ A′ over an interval to the right of A. But by
part (a), we must have X(A′) = A′ for all such A. That contradicts Lemma 17.

We now add a final element to our region between B and S∗. Define S∗ ≥ B to be the
largest asset level smaller than S∗ such that d∗(S∗) = S∗. This is a well-defined object,
because d∗ is usc (Lemma 4), d∗(A) ≤ A for all A ∈ [B, S∗] and d∗(S∗) < S∗ (Lemma
19), and d∗(B) = B by part (i) of the proposition.35 We record

LEMMA 20. B ≤ S∗ < S∗, and X(S∗) = S∗.

Proof. The assertion follows immediately from Lemma 19 coupled with d∗(S∗) = S∗.

Figure 7 summarizes the construction as well as the properties in Lemma 20. Panel A
illustrates a case in which S∗ > B, and Panel B, a case in which S∗ = B. (Note: it is
possible that X(A) = A to the right of S∗, though by Lemma 17, this can only happen
at isolated points.)

35Let S∗ be the supremum over S in [B,S∗] with d∗(S) = S (well defined, because d∗(B) = B). Take
any increasing sequence {Sn} in [B,S∗], Sn ↑ S∗, with d∗(Sn) = Sn for all n. Because d∗ is usc, we
have d∗(S∗) ≥ S∗, and because d∗(S∗) ≤ S∗ (part (b) of Lemma 19), it must be that d∗(S∗) = S∗. Note
that by part (a) of Lemma 19, S∗ < S∗.



47

A

A'

B S*

X(A)

A* S*

(A) S∗ > B

A

A'

B =S*

X(A)

A* S*

(B) S∗ = B

FIGURE 7. THE TWO SUSTAINABLE ASSETS S∗ AND S∗.

Define Y +(A) as the limit of Y (An) as An converges down to A. Given Lemma 9,
Y +(A) is well-defined and Y +(A) ≥ A.

LEMMA 21. If the Conclusion is false, Y +(S∗) ≥ S∗.

Proof. If S∗ = B the result is trivially true, so assume that S∗ > B. Suppose, on the
contrary, that Y +(S∗) < S∗. We first establish a stronger version of (53); namely, that

(61) L̂(S∗) < V s(S∗).

To this end, we carry out exactly the same argument as in the proof of part (a) of Lemma
19 leading to (58), with S∗ in place of S.36 Now observe that (59) — again, with S∗ in
place of S — must hold with strict inequality, because S∗ > Y +(S∗) ≥ Y . We must
therefore conclude that (60) holds with strict inequality, or that E(S∗) > 0. But then
Lemma 16 assures us that the Conclusion must follow, which is a contradiction.

Let µ ≡ S∗/B, and ρ ≡ S∗/B. Clearly, µ > ρ ≥ 1. Let S∗∗ ≡ µS∗, and S∗∗ ≡ µS∗.
Note that S∗∗ = µS∗ = ρS∗, so it can also be viewed as a scaling of S∗ by the factor ρ.
(Recall that by Lemmas 10 and 20, S∗ is also sustainable, so Lemma 7 will apply with
both the scalings µ and ρ.)

36Note again that equality must hold in (54). If strict inequality holds along a subsequence, then we know
that Y (An) = B and continuation values equal L(B) along that subsequence, so that the stronger form
(61) holds.
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A

A'

B S*

X(A)

A* S* S** S**

FIGURE 8. OUTLINE OF THE PROOF STARTING FROM LEMMA 22.

Here is an outline of the remainder of the proof. Use Figure 8. By Lemma 7 (a),
equilibria at assets to the right of S∗ and to the left of S∗ can be “scaled up”, using
the factor µ. These are shown by the upper line to the right of S∗∗ and the lower line
to the left of S∗∗. But S∗∗ is also a scaling of S∗ (using the factor ρ), so we can use
Lemma 7 again with Lemma 18 to achieve equilibria with even lower values (and lower
continuation assets); see the lower segment to the right of S∗∗. Such equilibria support, in
turn, higher asset values near S∗∗; see the upper line around S∗∗. The proof is completed
by appealing to Lemma 16, which contradicts the starting presumption of this entire
construction: that the Conclusion is false.

LEMMA 22. (a) For all A ≥ B,

(62) L̂(µA) ≤ µ1−σL̂(A).

(b) For each ζ > 0, there exists η > 0 such that for every A ∈ (S∗, S
∗], whenever

Y (µA) ≤ S∗∗ − ζ ,

(63) L̂(µA′) ≤ µ1−σL̂(A′)− η

for every A′ ∈ [S∗, A).

Proof. It is easy to see that Lemma 7 (a) implies (62). To prove part (b), fix ζ > 0 and
choose A as described, with Y (µA) ≤ S∗∗− ζ . Because Y +(S∗) ≥ S∗, any equilibrium
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that implements L(A) has a continuation {A1, V1} with A1 ≥ S∗. By Lemma 7 (a),
{µA1, µ

1−σV1} is an equilibrium continuation at A′′ ≡ µA > S∗∗. So

(64) u

(
A′′ − µA1

α

)
+ βδµ1−σV1 ≥ D(A′′),

and

(65) µA1 ≥ µS∗ = S∗∗.

Now, Y (A′′) ≤ S∗∗− ζ by assumption. Consider an equilibrium with the lowest contin-
uation value V (A′′) among those that implement Y (A′′) from A′′. Then

(66) u

(
A′′ − Y (A′′)

α

)
+ βδV (A′′) ≥ D(A′′).

If (66) does not bind, then we know that Y (A′′) = B and V (A′′) = L(B) (see footnote
34). Recalling that A′′ = µA and applying Lemma 1, we must therefore have

L(µA) = u

(
µA− B

α

)
+ δL(B)

≤ u

(
µA− µA1

α

)
+ δµ1−σV1 −

1− β
αβ

u′
(
µA− B

α

)
(µA1 −B)

≤ u

(
µA− µA1

α

)
+ δµ1−σV1 −

1− β
αβ

u′
(
S∗∗ − B

α

)
(S∗∗ −B)

= µ1−σL(A)− 1− β
αβ

u′
(
S∗∗ − B

α

)
(S∗∗ −B),(67)

where the first inequality uses (15) of Lemma 1, and the second invokes (65) and µA ≤
S∗∗. On the other hand, if (66) does bind, then using (64) and noting that A′′ = µA,

(68) u

(
µA− µA1

α

)
+ βδµ1−σV1 ≥ u

(
µA− Y (µA)

α

)
+ βδV (µA).

At the same time, by (65), Y (µA) ≤ S∗∗ − ζ ≤ µA1 − ζ for all A satisfying the
condition of part (b). Using this information in (68) and observing that µA ≤ S∗∗,37

we must conclude that there exists η′ > 0 with V1 ≥ V ′ + η1, where η1 can be chosen
independently of A. Therefore, using (68) again, there is η2 > 0 such that

u

(
A′′ − µA1

α

)
+ δµ1−σV1 ≥ u

(
A′′ − Y (A′′)

α

)
+ δV (A′′) + η2,

37This is needed to place a uniform lower bound on utility differences in (68).
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or equivalently, µ1−σL(A) ≥ L(µA) + η2. Combining this inequality with (67), and
defining η ≡ min{η2, [(1− β)/αβ]u′ (S∗∗ −B/α) (S∗∗ −B)}, we have

(69) µ1−σL(A) ≥ L(µA) + η

for all A satisfying the conditions of part (b). By Lemma 9, Y is nondecreasing, so
Y (µA′) ≤ Y (µA) ≤ S∗∗ − ζ for every A′ ∈ (S∗, A], so (69) holds for all such A′.
Because L̂ is usc and nondecreasing (Lemma 5), (69) must extend to L̂ over all A′ ∈
(S∗, A). By the right-continuity of L̂ (Lemma 6), (69) must also apply to S∗.

LEMMA 23. L̂(µA) < µ1−σL̂(A) for all A ∈ [S∗, S
∗].

Proof. By Lemma 18, there are ε′ > 0 and ζ ′ > 0 such that for every A′ ∈ (S∗, S∗ + ε′],
Y (A′) ≤ S∗ − ζ ′. Because S∗∗ = ρS∗, Lemma 7 (a) implies that Y (ρA′) ≤ S∗∗ − ζ
for all such A′, where ζ ≡ ρζ ′. “Downscale” assets of the form ρA′ by dividing by µ.
Defining ε ≡ ρε′/µ, it follows that part (b) of Lemma 22 applies to all A ∈ [S∗, S∗ + ε].

Suppose, by way of contradiction, that L̂(µA) = µ1−σL̂(A) for some A ∈ [S∗, S
∗]. Let

A∗ be the infimum over such A. Then A∗ ≥ S∗ + ε (by the previous argument), and by
the right-continuity of L̂ (Lemma 6),

(70) L̂(µA∗) = µ1−σL̂(A∗).

Define A′ ≡ µA∗ and observe that

D(µA∗) = D(A′) = u

(
A′ − d∗(A′)

α

)
+ βδL̂(d∗(A′))

= µ1−σu

(
A∗ − d∗(A′)

µα

)
+ βδL̂ (d∗(A′)) ,(71)

where the second equality uses the constant-elasticity form of u. There are now two
cases to consider. First, if d∗(A′)/µ > d∗(A∗), then (71) implies

D(µA∗) = µ1−σu

(
A∗ − d∗(A′)

µα

)
+ βδL̂ (d∗(A′))

≤ µ1−σ
[
u

(
A∗ − d∗(A′)

µα

)
+ βδL̂

(
d∗(A′)

µ

)]
< µ1−σD(A∗),(72)

where the weak inequality follows from (62), and the strict inequality from the fact that
d∗(A∗) is the largest maximizer of u (A∗ − x/α) + βδL̂ (x), and d∗(A′)/µ > d∗(A∗).



51

Otherwise, d∗(A′)/µ ≤ d∗(A∗). By part (b) of Lemma 22 along with the definition of
A∗, d∗(A′) ≥ Y (A′) = Y (µA∗) ≥ S∗∗, so that

(73) S∗ ≤ d∗(A′)/µ ≤ d∗(A∗) < A∗,

the last inequality following from the fact that A∗ > S∗, while S∗ is the largest value of
A ∈ [S∗, S

∗] with d∗(A) = A. But then by part (a) of Lemma 22 and the definition of
A∗, L̂ (d∗(A′)) < µ1−σL̂ (d∗(A′)/µ). Using this inequality along with (71),

D(µA∗) = µ1−σu

(
A∗ − d∗(A′)

µα

)
+ βδL̂ (d∗(A′))

< µ1−σ
[
u

(
A∗ − d∗(A′)

µα

)
+ βδL̂

(
d∗(A′)

µ

)]
≤ µ1−σ

[
u

(
A∗ − d∗(A∗)

α

)
+ βδL̂ (d∗(A∗))

]
= µ1−σD(A∗),(74)

where the weak inequality above follows from the definition of d∗(A∗). (72) and (74)
together show that in all situations,

(75) D(µA∗) < µ1−σD(A∗).

Let {A1, V1} be the equilibrium continuation that implements L(A∗). By Lemma 7 (a),
{µA1, µ

1−σV1} is an equilibrium at µA∗, it has value equal to µ1−σL(A∗), and moreover,
by the incentive constraint for {A1, V1} coupled with (75),

u

(
µA∗ − µA1

α

)
+ βδµ1−σV1 ≥ µ1−σD(A∗) > D(µA∗).

This strict inequality, along with the fact that µA1 > B, proves that one can lower
equilibrium value at µA beyond the value created by scaling {A1, V1}, which shows that

L(µA∗) < µ1−σL(A∗).

This contradicts the definition of A∗, and so completes the proof.

Proof of Proposition 4, part (ii). Assume the Conclusion is false. We claim that

(76) E(S∗∗) = P s(S∗∗)−D(S∗∗) > 0.
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There are two possibilities to consider. First, d∗(S∗∗)/µ ≥ S∗. In this case, the same
argument as the one leading from (71) to (75) works to show that

(77) D(S∗∗) < µ1−σD(S∗).

(Replace A∗ by S∗ and A′ by µS∗ = S∗∗ in that argument. Our inequality d∗(S∗∗)/µ ≥
S∗ is used to guarantee that (73) holds.) Because P s(S∗∗) = µ1−sPm(S∗) and Pm(S∗) ≥
D(S∗), (77) immediately implies (76).

Otherwise, d∗(S∗∗)/µ < S∗. However, it must be the case that

(78) d∗(S∗∗)/µ ≥ B.

To see this, apply part (b) of Lemma 7 by setting the path {µA∗t} in that lemma to the
constant path with asset level S∗∗ = µS∗ at every date.38 It follows from (78) that
A1 ≡ d∗(S∗∗)/µ is a feasible asset choice at S∗.

Now, let d be a generic continuation asset choice that solves (18) at S∗. By Lemma 4
and the fact that d∗(S∗) = S∗, it must be the case that d ≥ S∗. Because S∗ is sustainable
and d ≥ S∗ > A1 = d∗(S∗∗)/µ ≥ B,

(79) P s(S∗) ≥ D(S∗) > u

(
S∗ − A1

α

)
+ βδL̂(A1).

Noting that S∗∗ = µS∗ and d∗(S∗∗) = µA1, we must conclude that

P s(S∗∗) = µ1−σP s(S∗) > µ1−σ
[
u

(
S∗ − A1

α

)
+ βδL̂(A1)

]
= u

(
S∗∗ − d∗(S∗∗)

α

)
+ βδµ1−σL̂(A1)

≥ u

(
S∗∗ − d∗(S∗∗)

α

)
+ βδL̂(d∗(S∗∗)) = D(S∗∗),

where the first inequality uses (79) and the second inequality uses (62). That gives us
(76) again.

By Lemma 16, this immediately precipitates a contradiction, because (76) implies that
the Conclusion follows, while we have been working with the presumption that the
Conclusion is false.

38This is our only use of part (b) of Lemma 7.
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